
POLLACK PERIODICA
An International Journal for Engineering and Information Sciences

DOI: 10.1556/606.2019.14.2.4
Vol. 14, No. 2, pp. 39–50 (2019)

www.akademiai.com

HU ISSN 1788–1994 © 2019 The Author(s)

CONSTRUCTION OF FORMAL MODELS AND
VERIFYING PROPERTY SPECIFICATIONS

THROUGH AN EXAMPLE OF RAILWAY
INTERLOCKING SYSTEMS

1 Gábor LUKÁCS*, 2 Tamás BARTHA

1,2 Department of Control for Transportation and Vehicle Systems
Faculty of Transportation Engineering and Vehicle Engineering

Budapest University of Technology and Economics, Stoczek str. 2, 1111, Budapest, Hungary
e-mail: 1lukacs.gabor@mail.bme.hu, 2bartha.tamas@mail.bme.hu

Received 30 December 2017; accepted 20 November 2018

 Abstract: The use of formal modeling has seen an increasing interest in the development of
safety-critical, embedded microcomputer-controlled railway interlocking systems, due to its
ability to specify the behavior of the systems using mathematically precise rules. The research
goal is to prepare a specification-verification environment, which supports the developer of the
railway interlocking systems in the creation of a formally-proven correct design and at the same
time hides the inherent mathematical-computer since related background knowledge. The case
study is presented with the aim to summarize the process of formalizing a domain specification,
and to show further application possibilities (e.g. verification methods).

 Keywords: Modeling, Model checking, Petri net, Automata, Safety-critical, Railway
interlocking

1. Introduction

 In the railway interlocking system development there is a growing need for formal
specification methods, because development teams want to create systems with a
guaranteed level of safety. For the same reason, the application of formal methods is
also prescribed by the relevant standards (e.g. EN 50128 [1], EN 50129 [2]). These
standards classify the formal techniques as ‘highly recommended’ on the Safety
Integrity Level (SIL) 3 and 4 (e.g. EN 50128 Annex ‘A’, Table A.2, A.4, A.5) [1].

* Corresponding Author

40 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

 The Hungarian educational system provides only a minimal background in formal
methods for the engineers in the transportation domain, and they struggle to put these
methods into practical use, because of its interdisciplinary nature: tools from computer
science need to be applied for transportation engineering.
 In addition to this, many studies [3] prove that the cooperation of simple, easy to
describe system components (using Modular Approach (MA) [4]) may result in a very
complex behavior on the level of the integrated system.
 The goal of the research presented in this paper is to prepare a
specification/verification environment, which supports the transformation of semi-
formal, domain-friendly specifications into verifiable formal models. The inherent
mathematical, computer science-related background knowledge is hidden to a large
extent, and the verification of formal models is performed by existing model checking
tools. Although this approach is already used in other fields (nuclear safety systems,
avionics and space control systems, etc.), this paper describes a novel application of the
idea to the railway interlocking development.

2. Formal methods in the railway interlocking development lifecycle

 Formal methods are precise techniques for the specification, development and
verification of models, mainly based on discrete mathematics and mathematical logic.
They are used primarily in the area of information technology, but they can also be
included in system development, including software and hardware development as well
[5]. The syntax and semantics of formal models are precise, well-defined, and complete,
so they significantly improve the clarity and unambiguousness of specifications.
 The current railway interlocking engineering practice is characterized by non-formal
and semi-formal specifications and system designs (consisting of textual and ad hoc
descriptions) written by the domain engineers. The communication between the
stakeholders often causes misunderstanding and/or uncertainty. Using formal models
during the development process - an example process is shown in Fig. 1 - can reduce
these difficulties, as they support the rigorous specification, planning and verification of
complex systems, and the identification of errors in the early life cycle phases. Formal
models are typically executable, i.e. they can be tested early in their production. Using
suitable analytical tools model checking can be applied, allowing full discovery and
verification of the models’ behavior. When a qualified code generator generates the
code from the model, this proof of correctness will remain valid for the code in the
scope of the verified properties.
 Verification and Validation (V&V) activities need to be applied systematically in
the different phases of the life-cycle of safety-critical systems (this is also prescribed by
the relevant standards). There are a lot of different existing approaches to life-cycle
management, e.g. [6]. A possible life-cycle model (commonly known as the ‘V-model’)
of the railway interlocking software development is shown in Fig. 2 (left side), [7]. The
research presented here aims at preparing an automated process, which supports the
domain engineers’ work during the requirement, design and implementation phase. As
an added benefit, due to the use of an automated verification process some V&V life-

 CONSTRUCTION OF FORMAL MODELS 41

Pollack Periodica 14, 2019, 2

cycle activities can be skipped, result in a reduced ‘Y-life-cycle model’ that requires
less time and human resources [8]. Schematic figure of this process is shown in Fig. 2.

Fig. 1. One part of development life cycle (the planning process) applying formal modeling

 Fig. 2. The schematic way from V-model (left side) to Y-model (right side)
(on the basis of [1], [7] and [8])

3. Related work

 The application of formal methods in the railway interlocking system development
has a long history. The trends in the use of formal methods to railway signaling are well
summarized in [9]. There are many positive experiences with various formal methods in
the railway interlocking system development, e.g:

‒ The use of B-method to specify behavior of a screen door controller [10]. The
project developed a methodology, which is efficient and well-suited to systems
requiring high-level of safety. The paper discusses several issues that have to be
solved to achieve a more efficient process, e.g. the manual translation from B
models to the target language (Ladder diagram) requires a specific verification
process;

‒ The use of CSP||B to modeling a real double junction [11]. CSP||B combines
event-based with state-based modeling, where CSP stands for Communicating
Sequential Processes and B is the B-method. The goal of this paper is to create
formal models, which are straightforward to understand and verify by industrial
partners. According to the authors the representation of the different type
(event-based or state-based) components are easy with using a solely event-
based or a solely state-based framework, but the different encodings makes
them difficult to understand, which is not appreciated by the railway engineers.

Formal

Requirement

Specification

Formal

Models

modelchecking

Report of

Modelchecking

Planning

User Requirement

Specification

requirement

analysis

architecture

design

conceptual

design

System

Requirement

Specification

Architecture

Plan

Conceptual

Design

High-Level

System Design

preliminary

design

allocation of

requirements

Detailed

(Formal) Plans

detailed

design

Functional & Safety

Requirement

Specification

requirement

formalization

automated

transformation

V
System Development

(external phase)

Software

Requirements

Software Architect.

and Design

Software Component

Design

Software Component

Implementation

Software Component

Testing

Software Integration

Software Validation

Software

Maintenance

System Development

(external phase)

Software

Requirements

Software Component

Design

Automated

Code Generation

Automated

Integration

Software Validation

Software

Maintenance

Formal

Requirements

Integration

Model

Component

Formal Models

Model

Checking

Software Architect.

and Design

42 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

 In the area of software development for industrial control systems a similar
methodology is applied, discussed by [12]. The proposal of that work consists of two
parts: a verification workflow, which is implemented using model checking, and a
formal specification language to hide the mathematical/computer science background
from the industrial practitioners. All these can be applied to development of PLC-based
control software. The purposes of this research are to create a specification/verification
workflow (without implementation) to give a domain-specific formal specification
language, and to use model checking on safety-critical, embedded microcomputer-based
railway interlocking systems. In the D.28 Chapter (Annex D) of the EN 50128 [13]
standard a short introduction of formal methods is given, which includes the statement:
‘Each application domain requires different modeling methods and different proof
approaches.’ The research, discussed in this paper is also motivated by this observation.

4. Methodology

 A traditional and planned development process is shown in Fig. 3. The process input
is the domain specification (see Fig. 3 or Fig. 4), which consists of two parts: behavior
and feature descriptions by using domain specification from the practical life.
 In the first phases of the development process there is a decision about the necessity
and/or advantage of using formal methods. This is a multifaceted decision, whose
details are not intended to be covered in this article. (For example the EN 50128 Annex
‘A’ [1] gives a collection of the techniques appropriate for the chosen SIL and their
expedient combinations. A certain recommended combination may require the use of
formal methods. Whether choose this combination or not will depend on the developed
system and its components, and even the verification plan, etc.) If formal methods are
not used, then a traditional development process is followed. When the formal methods
are chosen, then the planned specification-verification platform is used to generate
formal models and to perform their verification with those tools, which are
recommended for the platform. The overall goal is to generate inputs of automated code
generation.
 This research uses model checking (see Fig. 4) to verify the models. Model
checking [14] is a method of computer science to answer the following question: does
the model conform to a set of requirements, or if there is a requirement violation, then
how can this situation occur? In case the requirements are fulfilled, then the model is
considered to be verified correct. If there is a requirement violation, then model
checking provides a counter example, which is an incorrect behavior of the model. The
possible outputs of model checking [5] are summarized of the model checking process
in Fig. 4. The term ‘non termination’ means that either the verification fails due to
insufficient memory or the verification is shut down prematurely, because it takes too
much time.
 In this research the selected two formalisms to describe behavioral domain models
are: Petri nets [15, pp. 459‒475] and finite automata [16]. These popular techniques
have been applied for a long time on the railway interlocking development [17],
[18], [19].

 CONSTRUCTION OF FORMAL MODELS 43

Pollack Periodica 14, 2019, 2

Fig. 3. The research goal and the process

Fig. 4. Model checking: An application

 The selected tools for the research are the PetriDotNet (PDN) modeling and
verification tool [20] and the UPPAAL framework (developed by UPPsala University
and AALborg University) [21]. These tools are suitable for the modeling and simulation
of railway interlocking systems, and fulfill many other factors that were taken into
account during the selection process (e.g. the portability of the model, the generated
output, the analysis ability, the simulation ability, the verification ability, etc.).
 To formalize requirements the Computation Tree Logic (CTL) temporal language
was chosen, [22] considering that it is an appropriate language to describe the
requirements, and the above verification tools can handle this language.

5. Case study

 The goals were to identify the transformation rules from the domain specification to
the formal model and to set the constraints onto the domain specification (e.g. only
Unified Modeling Language (UML [23]) and truth table can be used), because it is

BEHAVIOR FEATURE

Is the

formal method

required?

DOMAIN SPECIFICATION

(informal and \ or semiformal)

PREPARE FOR THE

BEHAVIORAL

DESCRIPTION

PREPARE FOR THE

FEATURE

DESCRIPTION

PLATFORM FOR PREPARING

AUTOMATED FORMALIZATION

 TRADITIONAL DESIGN

TOOLSET FOR THE

AUTOMATED FORMALIZATION

AND VERIFICATION

IMPLEMENTATION

(ie. automated code generation)

YES NO

Model Checking

Implementation
Choosing other

technique(s)

Counter-Example

Generation

Formal Requirement

Specification

Formal Models

defect in the requirements

d
e
fe

c
t

in
 t
h
e

 m
o
d

e
lin

g

Planning

d
e
fe

c
t

in
 t

h
e

 p
la

n
n

in
g

non termination

all properties

are satisfied
at least one of the

properties is not satisfied

44 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

necessary to automate the formalization and verification processes. A case study from
practice is used to identify transformation rules and constrains. Currently manual
methods are being used for the identification processes [24].
 A detail from practical functional specification of the occupancy detection
subsystem is described. This is a small software module: a detection point (see Fig. 5).

Fig. 5. Case study: A track detail with detection points

 To sum up the logical behavior of the detection point: it is very simple, if the train is
over the detection point it is ‘occupied’, and when the train is not over the detection
point it is ‘clear’. The detection point may be faulty. This behavior is described with a
truth table (see Table I).

Table I

The functional specification of the detection point (detail)

Internal
state

Inputs Outputs
New
internal
state

Fault Fault P Fault N Occup. P Occup. N Fault Occup. Fault

- not faulty not faulty clear clear not faulty clear not faulty

not faulty not faulty not faulty clear occupied faulty occupied faulty

not faulty not faulty not faulty occupied free faulty occupied faulty

not faulty not faulty not faulty occupied occupied not faulty occupied not faulty

- faulty - - - faulty occupied faulty

- - faulty - - faulty occupied faulty

faulty - - occupied - faulty occupied faulty

faulty - - - occupied faulty occupied faulty
 Notation: - do not care, P: not negated input, N: negated input, Occup.: Occupancy

 Note, that the functional specification of the detection point contains a lot of other
elements, for example the handling of timings, management of parameters, etc. These
elements are not shown in this paper for simplicity (see Fig. 3 and Fig. 4).
 From the initial functional specification (see Table I) a detailed specification is
made. The goals of the detailed specification are to clarify specification mistakes, to
make the specification more formal, and to clean up the plan. After that an intermediate
model is developed. The intermediate model is transformed automatically to a given
formalism, e.g. Petri net or automata. The transformation steps necessary for this case
study are described in [24].

track

detection

point 'A'

detection

point 'B'

section

 CONSTRUCTION OF FORMAL MODELS 45

Pollack Periodica 14, 2019, 2

6. Results

 In this section the result of transformation from functional specification into formal
models (Petri net and UPPAAL automata) is summarized and some examples of
verification (model checking) are shown. Simple Petri nets are applied because of the
portability of the model between different Petri net modeling tools.

6.1. The Petri net model of the detection point

 The Petri net model of the detection point is shown in Fig. 6. At the bottom of the
Petri net are the inputs (transitions and places are marked with prefix (‘IN_’, from
Input). The detection point has four inputs, two occupancy and two faulty. Two of them
are positive logic inputs and have two information types (‘_FP_’, from Faulty Positive,
and ‘_OP_’ from Occupancy Positive) and two of them are negative logic (‘_FN_’,
from Faulty Negated, and ‘_ON_’, from Occupancy Negated). In the case of the places,
the ‘_NF’ denotes ‘non-faulty’, ‘_F’ denotes ‘faulty’ and in the case of occupancy ‘_C’
denotes ‘clear’ and ‘_O’ denotes occupied (see Table I).

Fig. 6. The Petri net model of detection point

 The detection point has an internal state, which is shown in the middle of Fig. 6
(I_F_NF and I_F_F places), where I_F_NF means that the detection point is not faulty,
I_F_F that it is faulty. At the top of the Fig. 6 there are the output places of the model
(‘OUT_’, from Output). Note, that the marking of the outputs is similar to the marking
of the inputs. In the middle of the Fig. 6 one can see the transitions, which represent the
behavior of the detection point. Those transitions whose names include ‘F’ mean the
different ways of getting into the faulty state. The transition ‘OCC’ means that the
detection point gets into an occupied state, the ‘CLEAR’ means that it gets into clear
state and the ‘DISE’ transition symbolizes the disengage (reset) process.
 Note that it is not the goal to produce a readable Petri net, because of the planned
automated model generation. Note, that Fig. 6 does not provide full information about
the Petri net, because several edges are routed along the same path, and thus they

46 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

became indistinguishable. In Fig. 7 there is a simple part of the detection point model,
where the behavior of one transition (OCC) can be traced fully.

 a) initial state b) target state

Fig. 7. Part of the Petri net model describing the detection point
(detection point gets into the occupied state)

6.2. The UPPAAL model of the detection point

 The UPPAAL model of the detection point is presented in Fig. 8. On the left side of
the figure the automata of the inputs of the detection point are shown, and in the upper
right corner the initialization expressions of the UPPAAL model can be seen in black
color. The main automaton is in the middle of Fig. 8. (The marking scheme is the same
as for the Petri net model).

Fig. 8. The UPPAAL model of detection point

6.3. Verification with model checking

 In this paragraph some experiences about the model checking are given. Before that
a brief overview is presented about the requirement formalization experiences (more
detailed information is in [25]). There are three main types of requirements:

1. Requirements that can be formalized (mainly functional or safety requirements);

 CONSTRUCTION OF FORMAL MODELS 47

Pollack Periodica 14, 2019, 2

2. Requirements that cannot be formalized (e.g. non-functional requirements);
3. Requirements whose formalization depends on the level of the model (e.g.

definitions).

 The following requirement is from the software requirements specification:

 Example 1, REQ01 - If the detection point is faulty then its output always must be

faulty and occupied.

 The steps of the formalization process with explanations are shown in Table II.

Table II

Example of model checking - I

Step

1.
Original
requirement

Id. Natural language description

REQ01
If the detection point is faulty, then its output always
 must be faulty and occupied

2.
Prepared
requirement

CTL
op.

IF Expression THEN Expression

Expected
result of
model
checking

Result
of model
checking

AG if

(Fault =
faulty)
// internal
state

then

(Fault = Faulty
AND
Occupancy =
Occupied)
// outputs

True -

3a. PDN form AG (Det.I_F_F=1) →
(Det.OUT_F_F=1
Det.OUT_O_O=1)

True True

3b.
UPPAAL
form

A[] (I_F = true) imply
((OUT_F =
true)&&
(OUT_O = true))

True
Property
is
satisfied.

 The next requirement is from the list of requirements issued by the operator [26].
This requirement cannot be formalized, because it is a non-functional requirement.

 Example 2, REQ02-The components must also have a type ID and a unique

identifier

 The third requirement is a very high level, brief definition of the detection point.
This definition (requirement) is from System Requirements Specification (SRS) written
by the developer.

 Example 3, REQ03-The detection point is a device that detects the presence of the

train

 This definition is incomplete and inaccurate at the modeling level. To use this
requirement for model verification, this sentence has to be clarified. This task that can
be solved in many ways, but only domain engineers can make the choice between the
alternatives, because they have the necessary expertise. Nevertheless, this requirement
is well understood and verifiable in a high-level model of the system. One possible CTL
form of the requirement is for example:

48 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

AG (Det.IN_O = 1) → (Det.OUT_O = 1). (1)

 Explanation of the above expression in natural language: ‘A’ is a CTL path
quantifier meaning ‘on All paths’, and ‘G’ is a CTL temporal operator, meaning
‘Globally in every state’. After the temporal operators the Boolean expressions says: if
the input of the detection point is occupied (‘Det.IN_O = 1’), then the output of the
detection point shall be occupied (‘Det.OUT_O = 1’).
 Note that the UPPAAL form of the requirement is very similar to the PDN form, just
some notation is different:

(A[] (IN_O = true) imply (OUT_O = true)). (2)

 This requirement does not say anything about the type of the occupancy inputs (at
this phase of system development it is still not known whether the occupancy
information is received in positive or negative logic, or any other form). It does not say
anything about the configurability of the occupancy information, and it is not known
how the other inputs affect the occupancy output, etc. To summarize the above, this
requirement may be suitable for verification on the system level, but not for checking
the formal model based on the detailed specification. It is necessary to properly translate
(equivalently re-formulate it using the terms of the detailed formal model) this system
level requirement.
 The last requirement comes from the formal verification expert. The steps of its
formalization are shown in Table III.

Table III

Example of model checking - II

Step

1.
Original
requirement

Id. Natural language description
REQ04 The model of detection point shall be deadlock free.

2.
Prepared
requirement

CTL
operator

IF
Expres-
sion

THEN
Expres-
sion

Expected
result of
model
checking

Result
of model
checking

AG
not
deadlock

 True -

3a. PDN form AG EX true True True

3b.
UPPAAL
form

A[]
not
deadlock

 True
Property
is
satisfied

Example 4, REQ04-The model of detection point shall be deadlock free

 The PDN application automatically determines the deadlock freedom, but the
deadlock freedom can be checked with the help of the PDN model checker too with
expression AG(EX(true)).

 CONSTRUCTION OF FORMAL MODELS 49

Pollack Periodica 14, 2019, 2

7. Conclusion

 The primary goal of this research is to create a framework, in which the formal
models can be automatically generated from the domain-oriented specification. In this
process, the first step is to identify the transformation rules, but beside that it is also
important to collect the exceptions and to constrain the specification language.
Verification can be done by formalizing the requirements. The aim is to create a
specification-verification platform for domain engineers that hide the mathematical
background of formal methods.
 At the current point of the ongoing research only manual techniques are used to
identify transformation rules from specification into formal models. The collection of
rules is tested on single modules. For the case study presented in the paper, formal
models were manually constructed from the informal or semi-formal specification. The
transformation rules were not yet presented (due to size constraints), only concrete cases
of formalization.
 In the next step, the main challenges will be the implementation of the automated
model generation and verification on the module level, and the development of
algorithms for the (automatic) integration of these module-level models into system-
level models. The far away goals of the work are the fully automated system-level
verification process and the visualization of detected errors and defects for the domain
engineers in a comprehensible form.

Open Access statement

 This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited, a link to the CC License is provided, and
changes - if any - are indicated. (SID_1)

References

[1] EN-50128, Railway applications-communication, signaling and processing systems-
software for railway control and protection systems, 2011.

[2] BS EN-50129-2003, Railway applications: communications, signaling and processing
systems-safety related electronic systems for signaling, 2003.

[3] Cai H., Zhang C., Wu W., Ho T. K., Zhang Z. Modeling high integrity transport systems by
formal methods, Procedia - Social and Behavioral Sciences, Vol. 138, 2014, pp. 729‒737.

[4] Ricci S. The use of Petri Nets models in railway traffic applications, Internal Federation of

Automatic Control Proceedings Volumes, Vol. 42, No. 5, 2009, pp. 151‒156.
[5] Ésik Z., Gombás É., Németh L. Z. Verification of hardware and software systems, (in

Hungarian), TYPOTEX, 2011.
[6] Kovács G. L., Petunin A. An information view of manufacturing automation product life-

cycle management, Pollack Periodica, Vol. 11, 2016, Issue 2, pp. 3‒14.
[7] CENELEC-EN-50126, Railway applications-the specification and demonstration of

reliability, availability, maintainability and safety (RAMS), 1999.

50 G. LUKÁCS, T. BARTHA

Pollack Periodica 14, 2019, 2

[8] Camus J. L. Efficient development of avionics software with DO-178B safety objectives,
Esterel Technologies, 2002, pp. 1‒31.

[9] Fantechi A., Fokkink W., Morzenti A. Some trends in formal methods application to
railway signaling, in: Formal methods for industrial critical systems: A survey of

applications, Gnesi S., Margaria T. (Eds.) Ch. 4, 2012, pp. 61-84.
[10] Leeomote T., Servat T., Pouzancre G. Formal methods in safety-critical railway systems,

10th Brasilian Symposium on Formal Methods, Ouro Preto, Brasil, 31 August 2007,
pages 9.

[11] Moller F. Nguyen H. N., Roggenbach M., Schneider S., Treharne H. Railway modeling in
CSP||B: the double junction case study, 12th Internal Workshop on Automated Verification

of Critical Systems, Electronic Communication of EASST, Vol. 53, 2012, pp. 1-15.
[12] Darvas D. Practice-oriented formal methods to support the software development of

industrial control systems, PhD Thesis, Budapest University of Technology and
Economics, 2016.

[13] BS EN-50128, Railway applications. Communication, signaling and processing systems.
Software for railway control and protection systems, 2011.

[14] Kamide K., Yano Y. Logics and translations for hierarchical model checking, Procedia

Computer Science, Vol. 112, 2017, pp. 31‒40.
[15] He X., MurataT. High-level Petri nets extensions, analysis, and applications, In: The

Electrical Engineering Handbook, Chen W. K. (Ed.) Academic Press, Burlington, Ch. 9,
2005, pp. 459‒475.

[16] Keroglou C., Hadjicostis C. N. Verification of detectability in probabilistic finite automata,
Automatica, Vol. 86, 2017, pp. 192‒198.

[17] Durmu M. S., Yildirim U., Eris O., Söylemez M. T. Safety-critical interlocking software
development process for fixed-block signalization systems, Internal Federation of

Automatic Control Proceedings Volumes, Vol. 45, No. 24, 2012, pp. 165‒170.
[18] Gjaldbæk T., Haxthausen A. E. Modeling and verification of interlocking systems for

railway lines, Internal Federation of Automatic Control Proceedings Volumes, Vol. 36, No.
14, 2003, pp. 233‒238.

[19] Khan S. A., Zafar N. A., Ahmad F., Islam S. Extending petri net to reduce control strategies
of railway interlocking system, Applied Mathematical Modeling, Vol. 38, No. 2, 2014,
pp. 413‒424.

[20] Vörös A., Darvas D., Hajdu Á., Klenik A., Marussy K., Molnár V., Bartha T., Majzik I.
Industrial applications of the PetriDotNet modeling and analysis tool, Science of Computer

Programming, Vol. 157, 2017, pp. 7‒40.
[21] Soliman D., Thramboulidis K., Frey G. Transformation of function block diagrams to

uppaal timed automata for the verification of safety applications, Annual Reviews in

Control, Vol. 36, No. 2, 2012, pp. 338‒345.
[22] Patthak A. C., Bhattacharya I., Dasgupta A., Dasgupta P., Chakrabarti P. P. Quantified

computation tree logic, Information Processing Letters, Vol. 82, No. 3, 2002, pp. 123‒129.
[23] Object management group, unified modeling language V2.5, Object Management

Group, 2015.
[24] Bartha T., Lukacs G. Opportunities of automated transformation of formal specification

into a formal model in the interlocking systems area, In: Innovation and Sustainable

Surface Transport, T. Peter (Ed.) Vol. XI, 2017, pp. 187‒196.
[25] Farkas B., Lukacs G., Bartha T. Experiences with requirement formalization in the railway

interlocking development, In: Innovation and Sustainable Surface Transport, T. Peter (Ed.)
Vol. XI, 2017, pp. 197‒204.

[26] Kiss L., Héri J., Takács P., Sághi B., Szabó G. Requirements for safety components and
equipment of traffic control for the road railway (tram) systems, (in Hungarian) (BKV-

VILL-1.04), BKV Zrt, 2011.

