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 Abstract: The use of formal modeling has seen an increasing interest in the development of 
safety-critical, embedded microcomputer-controlled railway interlocking systems, due to its 
ability to specify the behavior of the systems using mathematically precise rules. The research 
goal is to prepare a specification-verification environment, which supports the developer of the 
railway interlocking systems in the creation of a formally-proven correct design and at the same 
time hides the inherent mathematical-computer since related background knowledge. The case 
study is presented with the aim to summarize the process of formalizing a domain specification, 
and to show further application possibilities (e.g. verification methods). 
 
 Keywords: Modeling, Model checking, Petri net, Automata, Safety-critical, Railway 
interlocking 

1. Introduction 

 In the railway interlocking system development there is a growing need for formal 
specification methods, because development teams want to create systems with a 
guaranteed level of safety. For the same reason, the application of formal methods is 
also prescribed by the relevant standards (e.g. EN 50128 [1], EN 50129 [2]). These 
standards classify the formal techniques as ‘highly recommended’ on the Safety 
Integrity Level (SIL) 3 and 4 (e.g. EN 50128 Annex ‘A’, Table A.2, A.4, A.5) [1]. 
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 The Hungarian educational system provides only a minimal background in formal 
methods for the engineers in the transportation domain, and they struggle to put these 
methods into practical use, because of its interdisciplinary nature: tools from computer 
science need to be applied for transportation engineering.  
 In addition to this, many studies [3] prove that the cooperation of simple, easy to 
describe system components (using Modular Approach (MA) [4]) may result in a very 
complex behavior on the level of the integrated system. 
 The goal of the research presented in this paper is to prepare a 
specification/verification environment, which supports the transformation of semi-
formal, domain-friendly specifications into verifiable formal models. The inherent 
mathematical, computer science-related background knowledge is hidden to a large 
extent, and the verification of formal models is performed by existing model checking 
tools. Although this approach is already used in other fields (nuclear safety systems, 
avionics and space control systems, etc.), this paper describes a novel application of the 
idea to the railway interlocking development. 

2. Formal methods in the railway interlocking development lifecycle 

 Formal methods are precise techniques for the specification, development and 
verification of models, mainly based on discrete mathematics and mathematical logic. 
They are used primarily in the area of information technology, but they can also be 
included in system development, including software and hardware development as well 
[5]. The syntax and semantics of formal models are precise, well-defined, and complete, 
so they significantly improve the clarity and unambiguousness of specifications. 
 The current railway interlocking engineering practice is characterized by non-formal 
and semi-formal specifications and system designs (consisting of textual and ad hoc 
descriptions) written by the domain engineers. The communication between the 
stakeholders often causes misunderstanding and/or uncertainty. Using formal models 
during the development process - an example process is shown in Fig. 1 - can reduce 
these difficulties, as they support the rigorous specification, planning and verification of 
complex systems, and the identification of errors in the early life cycle phases. Formal 
models are typically executable, i.e. they can be tested early in their production. Using 
suitable analytical tools model checking can be applied, allowing full discovery and 
verification of the models’ behavior. When a qualified code generator generates the 
code from the model, this proof of correctness will remain valid for the code in the 
scope of the verified properties. 
 Verification and Validation (V&V) activities need to be applied systematically in 
the different phases of the life-cycle of safety-critical systems (this is also prescribed by 
the relevant standards). There are a lot of different existing approaches to life-cycle 
management, e.g. [6]. A possible life-cycle model (commonly known as the ‘V-model’) 
of the railway interlocking software development is shown in Fig. 2 (left side), [7]. The 
research presented here aims at preparing an automated process, which supports the 
domain engineers’ work during the requirement, design and implementation phase. As 
an added benefit, due to the use of an automated verification process some V&V life-
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cycle activities can be skipped, result in a reduced ‘Y-life-cycle model’ that requires 
less time and human resources [8]. Schematic figure of this process is shown in Fig. 2. 

 

Fig. 1. One part of development life cycle (the planning process) applying formal modeling 

 

 Fig. 2. The schematic way from V-model (left side) to Y-model (right side) 
(on the basis of [1], [7] and [8]) 

3. Related work 

 The application of formal methods in the railway interlocking system development 
has a long history. The trends in the use of formal methods to railway signaling are well 
summarized in [9]. There are many positive experiences with various formal methods in 
the railway interlocking system development, e.g: 

‒ The use of B-method to specify behavior of a screen door controller [10]. The 
project developed a methodology, which is efficient and well-suited to systems 
requiring high-level of safety. The paper discusses several issues that have to be 
solved to achieve a more efficient process, e.g. the manual translation from B 
models to the target language (Ladder diagram) requires a specific verification 
process; 

‒ The use of CSP||B to modeling a real double junction [11]. CSP||B combines 
event-based with state-based modeling, where CSP stands for Communicating 
Sequential Processes and B is the B-method. The goal of this paper is to create 
formal models, which are straightforward to understand and verify by industrial 
partners. According to the authors the representation of the different type 
(event-based or state-based) components are easy with using a solely event-
based or a solely state-based framework, but the different encodings makes 
them difficult to understand, which is not appreciated by the railway engineers. 
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 In the area of software development for industrial control systems a similar 
methodology is applied, discussed by [12]. The proposal of that work consists of two 
parts: a verification workflow, which is implemented using model checking, and a 
formal specification language to hide the mathematical/computer science background 
from the industrial practitioners. All these can be applied to development of PLC-based 
control software. The purposes of this research are to create a specification/verification 
workflow (without implementation) to give a domain-specific formal specification 
language, and to use model checking on safety-critical, embedded microcomputer-based 
railway interlocking systems. In the D.28 Chapter (Annex D) of the EN 50128 [13] 
standard a short introduction of formal methods is given, which includes the statement: 
‘Each application domain requires different modeling methods and different proof 
approaches.’ The research, discussed in this paper is also motivated by this observation. 

4. Methodology 

 A traditional and planned development process is shown in Fig. 3. The process input 
is the domain specification (see Fig. 3 or Fig. 4), which consists of two parts: behavior 
and feature descriptions by using domain specification from the practical life. 
 In the first phases of the development process there is a decision about the necessity 
and/or advantage of using formal methods. This is a multifaceted decision, whose 
details are not intended to be covered in this article. (For example the EN 50128 Annex 
‘A’ [1] gives a collection of the techniques appropriate for the chosen SIL and their 
expedient combinations. A certain recommended combination may require the use of 
formal methods. Whether choose this combination or not will depend on the developed 
system and its components, and even the verification plan, etc.) If formal methods are 
not used, then a traditional development process is followed. When the formal methods 
are chosen, then the planned specification-verification platform is used to generate 
formal models and to perform their verification with those tools, which are 
recommended for the platform. The overall goal is to generate inputs of automated code 
generation. 
 This research uses model checking (see Fig. 4) to verify the models. Model 
checking [14] is a method of computer science to answer the following question: does 
the model conform to a set of requirements, or if there is a requirement violation, then 
how can this situation occur? In case the requirements are fulfilled, then the model is 
considered to be verified correct. If there is a requirement violation, then model 
checking provides a counter example, which is an incorrect behavior of the model. The 
possible outputs of model checking [5] are summarized of the model checking process 
in Fig. 4. The term ‘non termination’ means that either the verification fails due to 
insufficient memory or the verification is shut down prematurely, because it takes too 
much time. 
 In this research the selected two formalisms to describe behavioral domain models 
are: Petri nets [15, pp. 459‒475] and finite automata [16]. These popular techniques 
have been applied for a long time on the railway interlocking development [17],  
[18], [19]. 
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Fig. 3. The research goal and the process 

 

Fig. 4. Model checking: An application 

 The selected tools for the research are the PetriDotNet (PDN) modeling and 
verification tool [20] and the UPPAAL framework (developed by UPPsala University 
and AALborg University) [21]. These tools are suitable for the modeling and simulation 
of railway interlocking systems, and fulfill many other factors that were taken into 
account during the selection process (e.g. the portability of the model, the generated 
output, the analysis ability, the simulation ability, the verification ability, etc.). 
 To formalize requirements the Computation Tree Logic (CTL) temporal language 
was chosen, [22] considering that it is an appropriate language to describe the 
requirements, and the above verification tools can handle this language. 

5. Case study 

 The goals were to identify the transformation rules from the domain specification to 
the formal model and to set the constraints onto the domain specification (e.g. only 
Unified Modeling Language (UML [23]) and truth table can be used), because it is 
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necessary to automate the formalization and verification processes. A case study from 
practice is used to identify transformation rules and constrains. Currently manual 
methods are being used for the identification processes [24]. 
 A detail from practical functional specification of the occupancy detection 
subsystem is described. This is a small software module: a detection point (see Fig. 5). 

 

Fig. 5. Case study: A track detail with detection points 

 To sum up the logical behavior of the detection point: it is very simple, if the train is 
over the detection point it is ‘occupied’, and when the train is not over the detection 
point it is ‘clear’. The detection point may be faulty. This behavior is described with a 
truth table (see Table I). 

Table I 

The functional specification of the detection point (detail) 

Internal 
state 

Inputs Outputs 
New 
internal 
state 

Fault Fault P Fault N Occup. P Occup. N Fault Occup. Fault 

- not faulty not faulty clear clear not faulty clear not faulty 

not faulty not faulty not faulty clear occupied faulty occupied faulty 

not faulty not faulty not faulty occupied free faulty occupied faulty 

not faulty not faulty not faulty occupied occupied not faulty occupied not faulty 

- faulty - - - faulty occupied faulty 

- - faulty - - faulty occupied faulty 

faulty - - occupied - faulty occupied faulty 

faulty - - - occupied faulty occupied faulty 
 Notation: - do not care, P: not negated input, N: negated input, Occup.: Occupancy 

 Note, that the functional specification of the detection point contains a lot of other 
elements, for example the handling of timings, management of parameters, etc. These 
elements are not shown in this paper for simplicity (see Fig. 3 and Fig. 4). 
 From the initial functional specification (see Table I) a detailed specification is 
made. The goals of the detailed specification are to clarify specification mistakes, to 
make the specification more formal, and to clean up the plan. After that an intermediate 
model is developed. The intermediate model is transformed automatically to a given 
formalism, e.g. Petri net or automata. The transformation steps necessary for this case 
study are described in [24]. 
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6. Results 

 In this section the result of transformation from functional specification into formal 
models (Petri net and UPPAAL automata) is summarized and some examples of 
verification (model checking) are shown. Simple Petri nets are applied because of the 
portability of the model between different Petri net modeling tools. 

6.1. The Petri net model of the detection point 

 The Petri net model of the detection point is shown in Fig. 6. At the bottom of the 
Petri net are the inputs (transitions and places are marked with prefix (‘IN_’, from 
Input). The detection point has four inputs, two occupancy and two faulty. Two of them 
are positive logic inputs and have two information types (‘_FP_’, from Faulty Positive, 
and ‘_OP_’ from Occupancy Positive) and two of them are negative logic (‘_FN_’, 
from Faulty Negated, and ‘_ON_’, from Occupancy Negated). In the case of the places, 
the ‘_NF’ denotes ‘non-faulty’, ‘_F’ denotes ‘faulty’ and in the case of occupancy ‘_C’ 
denotes ‘clear’ and ‘_O’ denotes occupied (see Table I). 

 

Fig. 6. The Petri net model of detection point 

 The detection point has an internal state, which is shown in the middle of Fig. 6 
(I_F_NF and I_F_F places), where I_F_NF means that the detection point is not faulty, 
I_F_F that it is faulty. At the top of the Fig. 6 there are the output places of the model 
(‘OUT_’, from Output). Note, that the marking of the outputs is similar to the marking 
of the inputs. In the middle of the Fig. 6 one can see the transitions, which represent the 
behavior of the detection point. Those transitions whose names include ‘F’ mean the 
different ways of getting into the faulty state. The transition ‘OCC’ means that the 
detection point gets into an occupied state, the ‘CLEAR’ means that it gets into clear 
state and the ‘DISE’ transition symbolizes the disengage (reset) process. 
 Note that it is not the goal to produce a readable Petri net, because of the planned 
automated model generation. Note, that Fig. 6 does not provide full information about 
the Petri net, because several edges are routed along the same path, and thus they 
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became indistinguishable. In Fig. 7 there is a simple part of the detection point model, 
where the behavior of one transition (OCC) can be traced fully. 

 
 a) initial state b) target state 

Fig. 7. Part of the Petri net model describing the detection point 
(detection point gets into the occupied state) 

6.2. The UPPAAL model of the detection point 

 The UPPAAL model of the detection point is presented in Fig. 8. On the left side of 
the figure the automata of the inputs of the detection point are shown, and in the upper 
right corner the initialization expressions of the UPPAAL model can be seen in black 
color. The main automaton is in the middle of Fig. 8. (The marking scheme is the same 
as for the Petri net model). 

 

Fig. 8. The UPPAAL model of detection point 

6.3. Verification with model checking 

 In this paragraph some experiences about the model checking are given. Before that 
a brief overview is presented about the requirement formalization experiences (more 
detailed information is in [25]). There are three main types of requirements: 

1. Requirements that can be formalized (mainly functional or safety requirements); 
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2. Requirements that cannot be formalized (e.g. non-functional requirements); 
3. Requirements whose formalization depends on the level of the model (e.g. 

definitions). 

 The following requirement is from the software requirements specification: 

 Example 1, REQ01 - If the detection point is faulty then its output always must be 

faulty and occupied. 

 The steps of the formalization process with explanations are shown in Table II. 

Table II 

Example of model checking - I 

Step  

1. 
Original 
requirement 

Id. Natural language description 

REQ01 
If the detection point is faulty, then its output always 
 must be faulty and occupied 

2. 
Prepared 
requirement 

CTL 
op. 

IF Expression THEN Expression 

Expected 
result of 
model 
checking 

Result 
of model 
checking 

AG if 

(Fault = 
faulty) 
// internal 
state 

then 

(Fault = Faulty 
AND 
Occupancy = 
Occupied) 
// outputs 

True - 

3a. PDN form AG  (Det.I_F_F=1) → 
(Det.OUT_F_F=1 
Det.OUT_O_O=1) 

True True 

3b. 
UPPAAL 
form 

A[]  (I_F = true) imply 
((OUT_F = 
true)&& 
(OUT_O = true)) 

True 
Property 
is 
satisfied. 

 The next requirement is from the list of requirements issued by the operator [26]. 
This requirement cannot be formalized, because it is a non-functional requirement. 

 Example 2, REQ02-The components must also have a type ID and a unique 

identifier 

 The third requirement is a very high level, brief definition of the detection point. 
This definition (requirement) is from System Requirements Specification (SRS) written 
by the developer. 

 Example 3, REQ03-The detection point is a device that detects the presence of the 

train 

 This definition is incomplete and inaccurate at the modeling level. To use this 
requirement for model verification, this sentence has to be clarified. This task that can 
be solved in many ways, but only domain engineers can make the choice between the 
alternatives, because they have the necessary expertise. Nevertheless, this requirement 
is well understood and verifiable in a high-level model of the system. One possible CTL 
form of the requirement is for example: 
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AG (Det.IN_O = 1) → (Det.OUT_O = 1). (1) 

 Explanation of the above expression in natural language: ‘A’ is a CTL path 
quantifier meaning ‘on All paths’, and ‘G’ is a CTL temporal operator, meaning 
‘Globally in every state’. After the temporal operators the Boolean expressions says: if 
the input of the detection point is occupied (‘Det.IN_O = 1’), then the output of the 
detection point shall be occupied (‘Det.OUT_O = 1’). 
 Note that the UPPAAL form of the requirement is very similar to the PDN form, just 
some notation is different: 

(A[] (IN_O = true) imply (OUT_O = true)). (2) 

 This requirement does not say anything about the type of the occupancy inputs (at 
this phase of system development it is still not known whether the occupancy 
information is received in positive or negative logic, or any other form). It does not say 
anything about the configurability of the occupancy information, and it is not known 
how the other inputs affect the occupancy output, etc. To summarize the above, this 
requirement may be suitable for verification on the system level, but not for checking 
the formal model based on the detailed specification. It is necessary to properly translate 
(equivalently re-formulate it using the terms of the detailed formal model) this system 
level requirement. 
 The last requirement comes from the formal verification expert. The steps of its 
formalization are shown in Table III. 

Table III 

Example of model checking - II 

Step  

1. 
Original 
requirement 

Id. Natural language description 
REQ04 The model of detection point shall be deadlock free. 

2. 
Prepared 
requirement 

CTL 
operator 

IF 
Expres-
sion 

THEN 
Expres-
sion 

Expected 
result of 
model 
checking 

Result 
of model 
checking 

AG  
not 
deadlock 

  True - 

3a. PDN form AG EX   true   True True 

3b. 
UPPAAL 
form 

A[]  
not 
deadlock 

  True 
Property 
is 
satisfied 

Example 4, REQ04-The model of detection point shall be deadlock free 

 The PDN application automatically determines the deadlock freedom, but the 
deadlock freedom can be checked with the help of the PDN model checker too with 
expression AG(EX(true)). 
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7. Conclusion 

 The primary goal of this research is to create a framework, in which the formal 
models can be automatically generated from the domain-oriented specification. In this 
process, the first step is to identify the transformation rules, but beside that it is also 
important to collect the exceptions and to constrain the specification language. 
Verification can be done by formalizing the requirements. The aim is to create a 
specification-verification platform for domain engineers that hide the mathematical 
background of formal methods. 
 At the current point of the ongoing research only manual techniques are used to 
identify transformation rules from specification into formal models. The collection of 
rules is tested on single modules. For the case study presented in the paper, formal 
models were manually constructed from the informal or semi-formal specification. The 
transformation rules were not yet presented (due to size constraints), only concrete cases 
of formalization. 
 In the next step, the main challenges will be the implementation of the automated 
model generation and verification on the module level, and the development of 
algorithms for the (automatic) integration of these module-level models into system-
level models. The far away goals of the work are the fully automated system-level 
verification process and the visualization of detected errors and defects for the domain 
engineers in a comprehensible form. 
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