

Electronics - electronic measuring systems

AC/DC circuits and circuit elements

Ernő Simonyi

simonyi.erno@sztaki.mta.hu

Previous Lesson

- Ohm's Law
 - V = R * I
- Kirchoff's Voltage Law
 - The algebraic sum of voltage around a closed loop is zero.
- Kirchoff's Current Law
 - The algebraic sum of all currents entering and leaving a node is zero.
- Voltage/current division

Sources (Generators)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Voltage and current sources

- Active circuit elements –they 'create' something
- Representation varies

Voltage sources

Current sources

Sources (Generators)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

How do you work with them Superposition Theorem:

- Total current through or voltage across a resistor or branch is the algebraic sum of the responses caused by each independent source acting alone.
- Keep one source
- Replace all other sources
- Resultant responses are added together

AC/DC

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

DC

• The electric charge (current) only flows in one direction.

AC

- Electronic charge changes direction **periodically** (in time).
- Voltage also reverses because of current changes direction.

AC/DC(2)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

Generating AC

- Is produced using an alternator.
 - Special type of generator designed to produce AC
- A loop of wire is spun inside of a magnetic field,
- This induces a current along the wire.
- As the wire spins and enters a different magnetic polarity periodically, the voltage and current alternates on the wire.

Video link

AC/DC(3)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

2018.10.29.

AC/DC (4)

AC/DC(5)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

How do we use AC circuit elements

- Ohm's and Kirchoff's laws still apply
- Vectorial representation on the complex plane
 - Rotating vector
 - Vector length (peak value)
 - Vector angle (phase)

Capacitors

- A capacitor is an energy storage element.
- It can store electrical pressure (voltage) for periods of time.
 - -When a capacitor has a difference in voltage (electrical pressure) across its plate, it is said to be charged.
 - -A capacitor is charged by having a one-way current flow through it for a period of time.
 - -It can be discharged by letting a current flow in the opposite direction out of the capacitor.

Capacitors(2)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

On an ideal capacitor:

$$Q = C * V$$

C is the ability of a body to store an electric charge (unit: F - Farad)

The the V-I characteristic of a capacitor is:

$$I(t) = \frac{dQ}{dt} = C * \frac{dV}{dt}$$

Capacitors (3)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- A capacitor is constructed using a pair of parallel conducting plates separated by an insulating material (dielectric).
- When the two plates of a capacitor are connected to a voltage source as shown, charges are displaced from one side of the capacitor to the other side, thereby establishing an electric field.
- The charges continue to be displaced in this manner until the potential difference across the two plates is equal to the potential of voltage source.

Capacitor symbols

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Capacitor Reading Example

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

$$10 \times 10^4 \, \text{pF} = 10^5 \times 10^{-12} \, \text{F} = 10^{-7} \, \text{F} = 0.1 \times 10^{-6} \, \text{F} = 0.1 \, \mu\text{F}$$

•Thus, we have a $0.1\mu F$ capacitor with $\pm 10\%$ tolerance.

Capacitor Variatons

Inductors

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Inductor is a passive energy storage element that stores energy in the form of magnetic field.
- Inductor characteristic is governed by Faraday's law:

$$V(t) = \frac{d\lambda}{dt}$$

V = voltage induced across an inductor

 λ = magnetic flux (unit: Webers, Wb) through the coil windings (a coil made using resistance-less wires) due to current flowing through inductor.

Inductors (2)

Department of Control for Transportation and Vehicle Systems

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

• For an ideal coil, magnetic flux is proportional to current, so

$$\lambda \sim I \text{ or } \lambda = LI$$

- L is constant of proportionality, called inductance (unit: Henry, Wb/Amp).
- So, now, the V-I characteristic of an inductor is:

$$V(t) = \frac{d}{dt}(\lambda) = \frac{d}{dt}(LI) = L\frac{dI}{dt}$$

$$I(t) = \frac{1}{L} \int_0^t V(\tau) d\tau$$

• The above V-I characteristics demonstrate that the current through an inductor can not be altered instantaneously.

Inductor symbols

Inductor variatons

Measuring AC Voltage

- Vpeak peak to 0 voltage
- Vpp peak to peak voltage
- Vaverage
- VRMS Root Mean Square voltage

- VRMS amount of AC power that produces the same heating effect as an equivalent DC power
- This is what gets measured on voltmeters (and ampmeters)

Measuring AC Voltage(2)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

VRMS calculation

$$Vrms = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}$$

• For sine waves only: $Vrms = Vpeak * \frac{1}{\sqrt{2}} = Vpeak * 0.7071$

Impedance

- Is defined as the frequency domain ratio of the voltage to the current.
 - In other words, it is the voltage–current ratio for a single complex exponential at a particular frequency ω .
- Polar form:

$$Z = |Z| e^{j*arg(Z)}$$

- the magnitude |Z| represents the ratio of the voltage difference amplitude to the current amplitude
- the argument arg(Z) (commonly given the symbol theta) gives the phase difference between voltage and current.

Impedance(2)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• Cartesian form:

$$Z = R + jX$$

- the real part of impedance is the resistance R
- the imaginary part is the reactance X.
- Ohm' Law

$$V = I * Z = I * |Z|e^{j*arg(Z)}$$

Impedance and Phasors

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Resistor

$$Z = R$$

Voltage – current are in phase

Pure resistive – no complex part

Capacitor

$$Z = \frac{1}{jwC}$$

Capacitive reactance

$$X_C = \frac{1}{wC}$$

Current leads voltage by 90°

Inductance

$$Z = jwL$$

Inductive reactance

$$XL = wL$$

Voltage leads current by 90°

