IMPLEMENTATION OF REINFORCEMENT LEARNING IN FREEWAY SCENARIO WITH VARIABLE SPEED LIMIT CONTROL (VSL)

Omar Hassan 2021/ 2022

OBJECTIVES

- Implementing Variable Speed Limit (VSL) strategy on a freeway scenario in SUMO.
- Implementing reinforcement learning algorithm on a freeway scenario in SUMO.
- Harmonize occupancy rate on a freeway scenario in SUMO using developed algorithm.

METHODOLOGY

o Reinforcement learning → No labeled data to be used as input.

• Markov decision processes

METHODOLOGY

• Exploration vs. Exploitation

 $\rightarrow A_t \doteq argmaxQ_t(a)$

• Q-Learning

Action 1

 $\Rightarrow q^{n}ew(s,a) = (1-\alpha)q(s,a) + \alpha(R_{t+1} + \lambda maxq(s',a'))$

		Explore 2		
States	a1	a2	a3	an
s1	Q-value 11	Q-value 12	Q-value 13	
s2	Q-value 21	Q-value 22	Q-value 23	
s3	Q-value 31	Q-value 32	Q-value 33	
sn				

Methodology

• Multi-Agent RL

VSL IMPLEMENTATION

• Sumo Simulation Environment

- TraCI using python for controlling driving behaviors in the simulation.
- → Two tests: With/without ramp metering
- Learning Process

Parameter	Value		
Epsilon (ϵ)	1		
Epsilon decay rate	0.9995		
Learning rate (α)	0.15		
Discount rate (λ)	0.9		

RL learning parameters

• Filling Q-Table with Q-values

 $q^{n}ew(s,a) = (1-\alpha)q(s,a) + \alpha(R_{t+1} + \lambda maxq(s',a'))$

RESULTS

Minimum speed limit 50 km/h $\,$

(a) No VSL implementation

Minimum speed limit 30 km/h

(a) No VSL implementation

(b) VSL implementation 18000 iteration

CONCLUSION AND FUTURE WORK

• Conclusion

- → Proposed strategy could improve the traffic flow and the distribution of the vehicles across the whole freeway.
- → The use of reinforcement learning reduces the complexity of the optimization process.

• Future Work:

- Training time: the amount of time spent training might be enhanced.
- → Learning iterations: increasing the number of learning iterations is suggested.

• 1. In figure 4.3, depicts only C1D1 and D1E1. So are the other edges potentially related to the situation described here?

Figure 4.3: Occupancy comparison between different segments after implementing control theory approach

- 2. Does the author consider it necessary to have a separate subsection for describing the bar chart? This section could serve as a summary of the chapter and show a flowchart of the entire approach, which would make the structure more holistic.
- 3. I presume the simulation is performed in Discrete-Time, so what is the sampling time used in the simulations? Is the RL model robust to disturbances and noises?

• 4. The authors should show the results of the model training in chapter 5.

episode #

250

Ò

500

- 5. The authors need to explain the input quantities further and whether they influence the results empirically or through the selection algorithm
- 6. The author needs to consider the diagram to describe the whole process. Especially for the RL model.

• Multi-Agent RL

