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1 Introduction

1.1 Traffic models

The system theory has been dealing with the modeling of traffic process for a long time. Several
models have been developed to model the behaviour of the traffic flow. These models can be
grouped in many ways. Some models are concerned with the urban traffic, and others describe
the freeway traffic. The level of modeling varies, as well. In the microscopic models each vehicle
is considered independently with its properties concerning the speed, acceleration, lane changes,
etc. The interaction between the following vehicles is considered in these models. For instance,
Wiedemann’s car following model belongs to this group [27].

The macroscopic traffic models consider vehicle groups. The traffic flow is characterized by
some overall paramters, such as time mean speed, flow quantity, density, etc. These models have
been derived from fluid dynamic models. The first macroscopic traffic flow model was the Lighthill-
Whitham-(Richards) model [14, 19], which describes the traffic flow on freeways. The Cell Trans-
mission Model [7, 8] is able to model both the freeway and the urban traffic flow. The Store &
Forward model [2, 3, 10] is used in realized control algorithm in more urban location.

Between the microscopic and macroscopic models can be found, as a transition, the mesoscopic
models. These models use single vehicles with its properties in continuous time. But they usually
apply spatially discretized network. What does the discretized network (and time) mean in case
of the traffic flow models?

The traffic flow is a continuous time process. But our control opportunities (most often traffic
lights) are able to operate in discrete time. The green times are computed in terms of seconds, thus,
the smallest unit which the controller has to use - not a surprise - is the second. To control and
model the movement of the vehicles, the continuous time process has to be temporally discretized.

The long freeway should be divided into shorter (often equal long) parts, to segregate the
various traffic situations. Each sector is described by a distinct equation. This process is called
spatial discretization. In the urban environment, the shorter road links can be considered as a
discretized network without further assumptions.

Similarly to a lot of natural processes, the traffic flow can be modeled as a nonnegative system.
Roughly, nonnegativity means that the system will give nonnegative response to nonnegative in-
puts. In case of the traffic network, the positive input is the number of entering vehicles, which
cannot be negative. The output of the system can be, for instance, the number of vehicles on a
certain link, or the number of outflowing vehicles from a subnetwork. These values are naturally
nonnegative. The traffic models have to be able to manage this property. The model equations
have to be constructed such a way that the model should not give negative results.

Moreover, the vehicle-conservation law is fulfilled in the traffic flow. This law declares that
the vehicles cannot disappear in the network, and vehicles cannot arise in the network without
a defined source. (This law is a special form of the mass-conservation law, applied in physical

systems.)

1.2 Motivation

The Store & Forward model has been widely examined in the past decade. A main advantage
of this model is that it produces a linear system to describe the road traffic in urban areas. The

linear systems can be treated well, if we design control, or analyze the properties of the model.



Unfortunately, this model is not able to handle the uncertainties obtained in the modeling procedure
[23].

The uncertainties come from our measurement systems, and caused by the modeling method.
The installed, and now employed measurement systems (loop detectors and cameras) in road traffic
cannot count the number of vehicles without fault. Moreover, there can be links in the traffic
network, in which we do not measure any parameters. There can be turning possibilities on the
unmeasured part of the network between two measured links, which guide some vehicles out from
the considered network. Thus, the amount of the unmeasured vehicles misses from the measured
state of the next link. This lack of information can be considered as a fault, as well. The traffic
models without any assumption of measurement failure can be considered as so called nominal
systems. If we design controller to this nominal model to control the movement of the vehicles
by traffic lights, we cannot reach the appointed output (outflow of vehicles) by the computed
control inputs (green signals). We have to use uncertain models, in which there are other terms
representing the measurement failures. The controls, which are applied to the uncertain model,
are called robust controls [28].

It can be a reasonable question if there are any modeling approaches, which can apply the
uncertainty in the road traffic measurement, and can be constructed without a lot of constraints
and additional assumptions. Moreover, it is expected that in the system matrices there can be
found some indication to the traffic network structure. The aim of this thesis is that the so
called compartmental systems are whether suitable to model the urban traffic with the above
considerations. Hence, analysis of compartmental behaviour for macroscopic and urban traffic flow
modeling is considered. One of our intention is to adress the control oriented modeling question of
such a traffic flow description rather than focus on pure control synthesis techniques.

The compartmental models are widely used in the modeling chemical processes, or biological
processes (see for instance, [6, 17, 21]), mostly. These models are constituted in continuous time.
Since our control techniques in the road traffic are not able to handle the continuous time (the
data collection, as well as the control can be realized between discrete time steps), we need discrete
time models and controllers. Naturally, discrete time compartmental models can be used, as well.
The compartmental models have two important properties, which are definitely required to use
them as traffic flow model. First, the mass-conservation law is always held, and second, they are
nonnegative, as well. As key feature, the movement of the vehicles can be considered as the mass
flow.

This thesis is organized as follows. The second section introduces the required notations, and
provides some definitions and theorems from the field of linear algebra, and the system theory.
Section 3 gives an overview from the macroscopic traffic flow models Store & Forward model, and
the Cell Transmission Model. In the fourth section, the exposition of the compartmental traffic
model, including the properties of the matrix representations is presented. A small simulation
example is presented in this section, as well. The fifth section deals with the analysis of the
compartmental traffic model. The stability in Lyapunov sense, the local controllability, and the
sensitivity of the system matrix have been examined, and have been illustrated by examples.
Section 6 marks the further research directions out, and Section 7 contains some concluding remarks
about the results of this thesis.



2 Notations and preliminaries

The applied notations are reviewed in this section. Some definitions are given from the field of

linear algebra and system theory, as well.

Abbrevations

CTM : Cell Transmission Model

LTI : Linear Time Invariant (system)
SF : Store & Forward (model)

Mathematical notations

R™ : n dimensional field of real numbers

Rm>" : m X n dimensional field of real numbers

RT : nonnegative n dimensional field of real numbers (z > 0)
Z, : field of nonnegative integers

N : field of natural numbers

X,y : vectors denoted by bold face letters

x>>0 : all entries of x are nonnegative

A € R™ "™ : real valued matrices with n row and m column, denoted by bold face capital letters
AT : the transpose of A

Al : the inverse of A

|A| : the determinant of A

A : eigenvalue of a matrix

v : eigenvector of a matrix

Notations of variables
Variables related to the SF model

qi(k) : number of entering vehicles into the ¢-th link at time step k
hi(k) : number of leaving vehicles from the i-th link at time step &
d;(k) : number of entering vehicles from environment into the é-th link
at time step k (demand input)
0i(k) : number of leaving vehicles to environment from the é-th link at time step &
xi(k) : number of vehicles in the ¢-th link at time step k
0y : turning rate from the j-th link to the ¢-th link
S; : leaving capacity in the ¢-th link
u; (k) : green time of the i-th link at time step &
T. : cycle time of the signal plan

Variables related to the compartmental traffic model

q:(k) : number of entering vehicles into the i-th compartment at time step k
hi(k) : number of leaving vehicles from the i-th compartment at time step k
d;(k) : number of entering vehicles from the environment into the i-th compartment

at time step k (demand input)

0;(k) : number of the leaving vehicles to the environment from the i-th compartment
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at time step k

x; (k) : number of vehicles in the ¢-th compartment at time step k

Bij (k) : leaving flow rate from the j-th compartment to the i-th compartment at time step k
P : number of permitted turns in the entire compartmental network

u; (k) : green time of the i-th compartment at time step k

Tij : transmission throughput rate from the compartment j to the compartment ¢

7“2, j : maximal transmission from the compartment j to the compartment 4

e : maximal capacity of the i-th compartment

T : sample time

Definitions

The presented compartmental systems are nonnegative systems, therefore they contain positive

matrices. Hence, the definition of the nonnegative matrix is provided.

Definition 2.1 (Positive matrix)
The matrix N is called positive, if all its entries are nonnegative, and at least one is positive (to
avoid the trivial case of all-zero matrix) [4].

In model analysis the eigenvectors and eigenvalues are required many times. Some parameters
can be introduced only with the help of these notions. Moreover, the eigenvalues have physical

sense in the compartmental traffic system.

Definition 2.2 (Eigenvectors and eigenvalues of a matrix)

1. Let us consider the following equation with the real matrix N,
Nv = Av. (2.1)

The nonzero vector v is said to be the right eigenvector of the matrix N, X is the eigenvalue

of the matrix N. The right eigenvectors are column vectors.

2. Let us consider the equation with the real matrix N,
yIN = \yT. (2.2)

The nonzero vector y” is said to be the left eigenvector of the matrix N, X is the eigenvalue
of the matrix N. The left eigenvectors are row vectors. (To this fact refers the superscript

T.) J20]
The stability analysis requires positive-definite matrices in certain cases.

Definition 2.3 (Positive-definite real matrix)
The n x n real matrix N € R"*" is positive-definite, if xTNx > 0 is satisfied for all non-zero
vectors x with real entries (x € R™).

With other words, the n x n real matrix N € R"*" is positive-definite, if all its eigenvalues are

positive (A\; >0 i=1,--- ,n), where X denotes the eigenvalues of N [20].

The properties of the matrix representation of the compartmental traffic systems are examined.

The negative-semidefinitness appears among these properties.
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Definition 2.4 (Negative-semidefinite real matrix)
The n x n real matrix N € R"*™ is negative-semidefinite, if xTNx < 0 is satisfied for all non-zero
vectors x with real entries (x € R™).

With other words, the n xn real matrix N € R™"*" is negative-semidefinite , if all its eigenvalues
are nonpositive (A\; <0 4=1,--- ,n), where A denotes the eigenvalue of N [20].

We obviously need the definition of compartmental marices in the analysis of the compartmental

systems.

Definition 2.5 (Compartmental matrix)

The n x n matrix N = [n;;] is said to be compartmental if the followings are satisfied [24]:

1. n; >0, foralli,j€Zy;
n
2. Znij <1, foralljeZ,.
i=1

The diagonalizability of the matrix representation is examined in this thesis, thus some defini-

tions are required from this field.

Definition 2.6 (Eigenvalue decomposition (EVD))
The n x n matrix N can be diagonalizable, if there exists a diagonal matrix D, and an invertible
matrix T, such that D = T"INT. The matrix D contains the eigenvalues of the matrix N. [26].

(The eigenvalue decomposition is also called as diagonalizing of a matrix.)

Theorem 2.7 (Necessary and sufficient condition for existing the EVD)
The n x n matrix N can be diagonalizable if and only if it has n linearly independent eigenvectors
[26]. The proof can be found in [26].

The modal matrix plays an important role in the eigenvalue decomposition.

Definition 2.8 (Modal matrix)

The columns of the modal matrix of the n x n matrix N is constituted by the eigenvectors of the
matrix N. At eigenvalue decomposition (See Definition 2.6.), the modal matrix fill the part of the
transformation matrix T [20].

Some examined parameters are defined by matrix norms. The definition of the matrix norm

need the notion of the singular value.

Definition 2.9 (Singular value of a real matrix)
If the n x n matrix N is a real valued, and has rank r, and o? denotes the eigenvalues of the
positive semidefinite matrix NTN, then the numbers:

01209 2> '.'ZU’I":UT—Fl =" =0n

are called as the singular values of the matrix N [20].

Definition 2.10 (p norm of a matrix)

The p-norm of a matrix N € R?*" is definied by the following expression.

||Ax]],
||A[] = max : (2.3)
x#0 ||x][p
wherep € {1,2,--- ,00}. There are formulas for some p to compute the corresponding p-norm [20].
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o [|A[l = maxi<j<r 370 i,

e ||A||2 = 01, i.e. the greatest singular value of matrix N,

o [|Alloo = maxi<i<g Y5y |nil-

The compartmental systems are nonnegative systems, therefore we have to define this class of

systems.

Definition 2.11 (Nonnegative system)

The discrete time linear dynamical system given by
x(k+1) = Ax(k) + Bu(k), =x(0) =x0,keN,xeR" (2.4)

is nonnegative if for every x(0) € R and u(k) >> 0, k € N, the solution x(k), k € N, to (2.4) is

nonnegative [5].

Proposition 2.12
The linear dynamical system given by (2.4) is nonnegative if and only if A € R"*" B € R"*™

and x(0) is nonnegative. [5]
Our compartmental traffic system has a bilinear form.

Definition 2.13 (Discrete time bilinear system)

A discrete time bilinear system is defined by the difference equation
x(k +1) = Ax(k) + B(x(k))u(k) + Cu(k) (2.5)

An equivalent formulation of the equation (2.5) can be the following equation, if the system has
only one input:
x(k+1) = (A 4 u(k)B)x(k) + Cu(k), (2.6)

where A, B, C are real constant matrices in appropriate dimensions [12].
The model analysis extends to the field of stability analysis in Lyapunov-sense.

Definition 2.14 (Equilibrium point of a discrete time system)
The point x. of the dynamical system given by x(k+1) = f(x(k);0; k) is said to be an equilibrium
point from the time step ko, if [9]

x(k) =x. Vk> ko. (2.7)

Definition 2.15 (Lyapunov stability for a solution of a nonnegative dynamical system)

The equilibium solution x(k) = x. of the nonnegative system given by
x(k+1)=Ax(k), x(0)=x9, keN (2.8)

is Lyapunov stable, if for every € > 0 there exist § = §(¢) > 0 such that if xg € Bs(X,) ﬂ@, then
x(k) € B:N @, k € N, where Bs(x.) is a hypersphere around x. with radius ¢.

The equilibrium solution x(k) = x. of the nonnegative dynamical system (2.8) is semistable, if it
is Lyapunov stable, and there exists 6 > 0 such that if xo € Bs(x.) ﬂm, then limy_, o, x(k) exists.
The equilibrium solution x(k) = x. of the nonnegative dynamical system (2.8) is asymptoti-
cally stable if it is Lyapunov stable and there exists § > 0 such that if xg € Bs(x.) N R, then
lim, o x(k) = %, [13].



The controllability of the systems is strongly connected to the reachability property.

Definition 2.16 (Reachability of nonlinear systems)
1. For the system
x(k+1) = f(k.x(k)u(k) (k€ Zy) (2.9)
the state x € (R™ x Z) is reachable (or N-step reachable), if there exist a control sequence U

such that the state 0 is transferred to x under the action of U (0 N x).

2. If for all x € R™, x is reachable (or N-step reachable), then the system (2.9) is completely
reachable at all times [25].

Definition 2.17 (Reachability of LTI systems)
The discrete time LTI system given by (2.4) is reachable, if and only if the discrete time reachability
matrix, denoted by W,

W,=[B AB ... A"'B] (2.10)

has full rank, i.e. rank(W,) = n.

Remark 2.18

If A is reversible, i.e JA~" then discrete time reachability coincidences with controllability.



3 Macroscopic urban traffic models

Some theoretical assupmtions of the presented two macroscopic urban traffic models are considered
during the development of the compartmental traffic model. Therefore a short outline is presented
from the Store & Forward model, and the Cell Transmission Model.

3.1 The Store & Forward model

In this subsection a short summary of the Store & Forward (SF) model [2, 3, 10] is given. This
approach can be used to model the dynamics of the urban traffic flow. While the real vehicles are
moving in the network, actually they travel from a traffic light to another. During this movement
they do turns in some intersections. This moving-stopping motion appears in the SF model. As
state variables of the SF model are considered the queue lengths in the road links. This approach
applies the so called turning rates (denoted by «). This parameter describes how many vehicles
turn into the several directions after passing the stop line. The SF model depends on the knowledge
of all turning rates in each junction. The outflow of the link, and the green time is connected by
a leaving capacity (denoted by s). It is assumed that all vehicles can leave a link and therefore
siu; (k) reflects the real outflow.

The notations of the SF approach can be seen in Figure 1.

hs
02 - hs, ds
— 2 q{&25 = 5 5
_______________ g3 - h3 e e e e e
d 1 T —~ JV, 0661'21}% T 6 —’OG
Q63 - 113
T A
[e7Sy 21 ! hs
ags|-hs !
q4 .
1
1
1
T4 1 XT3
1
1
4 13
1
1

Figure 1: The notations of the SF model

The model equation describing the dynamics of the system is given by the following,
zi(k+1) = 2;(k) + qi(k) — hi(k) + di(k) — 0:(k). (3.1)

The number of entering vehicles into a link, the number of leaving vehicles from a link can be

written by the following detailed formulas:

qi(k) = aij - hy(k), (3.2)
=
hi(k) = siu;(k), (3.3)
0;(k) = agizi (k). (3.4)
8



Considering the above relationships we can write,
xz(k + 1) = $l(l€) + Z OéiijUj(k) — siui(k) + dz(k) - 0401'271'(/{7). (35)
Jj=1
j#i

The matrix equation form of the open loop system is then given by,

(o (k+1)] [1—ao -+ 0 - 0 | [21(k)]
xi(k.+ | = 0 1 —-aol- 0 xl(k) +
_xn(k’.+ 1) i 0 . 0 . 1 —-aon_ _$n‘(l€)_
[ —s1 o ausi o oupsy] _ul(k)- -dl(k:)-
+ ai;sl cee =8 - ai,;sn uz(k:) + di&k) ) (3.6)
(Qpis1 o anisi o —Sn | | ua(k)] | dn(K) |

The control algorithms always contain feedback, but they differ in the way of the carry out.
Some methods use output feedback, others employ the method of state feedback. In urban traffic
applications it is more frequent that the output of the system is not defined explicitly. The control
algorithm minimizes one (or more) parameters, but these amounts are derived, they cannot be
measured in the real network directly. Therefore, the state feedback method is applied in traffic
systems. Naturally, the physical content of the state changes with the traffic models. In the SF
approach, the queue lengths mean the ground of the control. Thus, we apply state feedback in
control appoaches using the SF model [2].

Choose the control input as it was a linear combination of measurable states z;(k) (linear
control policy is applied), and therefore the equation u; = k;x; is held.

Substituting the previous equation into equation (3.5) can be obtained the following formula,

j=1
J#i

The closed loop system is described by the matrix equation,

.’Bl(k} 4+ 1) 1— a1 —sikr - a1iSiki cee A1nSnkn $1(I€) dl(k)
$1(k + 1) = 181 kl e 1-— Qo; — Szkz e ozmsnk:n CL‘Z(IC) + dl(k)
zn(k+1) an1s1k1 e anisiks s 1 — aon — Snknd Lzn(k) dn (k)

(3.8)

Note that s;u;(k) does not reflect the exact number of crossing vehicles in reality, therefore
the vehicle conservation law is not strictly held. Only an expected (nominal) averaged green time
transfer rate (s;) can be associated with the SF description, which, however, might be applicable.
Definitely, the exactness of SF model requires the measurement of s;. Available control design
techniques [3] use this concept for constrained control solutions, and have been concluded to work
accurately enough in real cases.



3.2 The Cell Transmission Model

This subsection gives a very short overview of Daganzo’s Cell Transmission Model (CTM), which
was first developed to describe the traffic flow on freeways [7]. Later it has been used for urban
traffic modeling [8].

In this approach a road link is divided into cells. The length of a cell is equal to the distance
that a vehicle can achieve in free flow conditions. This can be considered as spatial discretization.
Thus, the maximal number of vehicles (N;(k)) in the i-th cell at time step k can be described by
the following equation:

Ni(k) = lipmaa (3.9)
where [; is the length of the i-th cell, ppqz is the ‘jam density’'. Another predefinied constant is
the maximal capacity of cell transmission, i.e. how many vehicles can flow from the i-th cell to the
i + 1-th between the time step k to k + 1. This amount is denoted by Q; (k).

The CTM uses directed graphs (detailed in subsection 4.1) for network representation, as well.
The cells are considered as nodes, and the turning possibilities mean the arcs.

Let us denote z;(k) as the number of vehicles in the i-th cell at time step k. The dynamical

equation of the cell can be written as,
xzi(k+1) = z;i(k) + yi (k) — yiy1 (k). (3.10)

The term y;(k) denotes the inflow to the i-th cell at time step k.
Daganzo has introduced restrictive conditions for the inflows to hold the vehicle-conservation
law in the model under the form:

yi(k) = min{x; _1(k), Qi(k), Ni(k)—zi(k)}. (3.11)

The last term in this condition means the empty space in the target cell (i) at time step k.
These amounts describe the entire flow process. The first concerns the source cell, the second the
transmission, and the third term the target cell.

The first cell in each direction models the environment of the modeled network. They provide
vehicles for the network. It is assumed that these first cells has infinite capacity in terms of the
number of vehicles. The last cell in each branch denotes the environment again. These cells
behave as absorbing cells. Similarly to the first cells, the last cells have inifite capacity. Another
assumption is that the entire network (except for the first cells) is empty at the first time step.

For instance, the CTM model of a T-shape intersection can be seen in Figure 2. The cells
related to the environment of the network are depicted by double framed rectangles, and have the
notation eg - - - €g.

The network topology can be aggregated by two basic network types. In merges there is one
cell, which receives vehicles from two or more cells. In Figure 2 cell 9 can be seen, which has two
inputs: cells 6 and 2. The diverge is the opposite of the merge. In this structure one cell sends
vehicles to two or more cells. For instance, cell 2 behaves as a diverge cell. As it can be seen in the
figure, there are only 1:1, 1:n, and n:1 connections. The abbrevations denote how many turning
possibilities start from the sending cell of a connection, and how many connections arrive at the
target cell of a connection.

Daganzo has been restricted the allowed network part structures: the n:n connections are not

permitted. This is the reason for the lack of the left turning possibilities in the example network

1Jam density is the maximal value of parameter density in one cell.
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in Figure 2. In that case special rules would be required to divide the outflow and the inflow into
the appropriate parts. By including an artifical cell this problem can be eliminated, as it can be
seen in [8]. The inflows and outflows of the elements of merges and diverges are based on (3.11).
The detailed method, and the formulas can be found in [8].

The model initially assumes that the turning proportions are known in each junction. Turning
proportion denotes the same notion, as the turning rates in the SF model. The CTM applies
the FIFO principle. If we would like to distinguish the lanes depending on the further direction
of movement, we have to define detached cell for each direction. By this step we eliminate the

possibility of the existence of n:n connections.

2 y Yen
= 11 Yeo T4 4| Yg a3 ? Y3 T1o 12| Y12 211 | Yeg P
B Y1 ! Yo T 2 Yo To 9| Y10 210 0| Yes s
7 6
g L6
Ys Yo
8 5
HE L5
Ye, Ys
e e

Figure 2: Example network for CTM model
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4 The compartmental traffic model

The aim of this chapter is to present the model equations of the compartmental traffic system.

Moreover, the properties of the system matrices are discussed here, as well.

4.1 Basics of compartmental systems

Compartmental systems describe the mass transfer between elements of an engineering network.
Generally, such elements of a network are represented by compartments in the model, which can
contain mass. For instance, tubes, tanks can be taken from the practical engineering fields. If we
would like to model the traffic process as a compartmental system, the road links can be considered
as compartments, and the nodes (more exactly the turning possibilites) as connections between
the compartments.

Conventionally road networks are modeled by a directed graph. (In directed graphs the con-
nections have only one direction, i.e. a bilateral relation is decribed by two connections.) The
compartmental approach applies this method, as well. Moreover, each compartment represents
one link with only one direction, i.e. a road link with two opposite directional lanes can be repre-
sented by two compartments. From the previous two statements it follows that there exists only
one connection between two compartments in such model. Another important restriction is that
turning from a link to itself is not permitted.

Figure 3 is given to demonstrate the modeling procedure. In the first picture an intersection?
can be seen, where the turnings from a link towards all possible directions to all directions are
permitted. The road links, which will be modeled as compartments, are highlighted by gray
rectangles. The turning possibilities mean the connections between the compartments. In the
second picture the compartmental model of this intersection can be seen.

As it can be seen in the figure, the road links with more lanes are considered as one compartment.
Thus, the multiple lane sectors of the links are not included in the model. If we would consider
these, we would have to split the links into two parts: to a free flow part, and a queueing part (as
it was done in [15]). To perform this, the information of ‘turning rates’ are required. These values
tell us, the proportion that the vehicles choose a lane before the stop line, when they arrive from
the free flow part. For the knowledge of the proportions we would have to measure at more than
one sections of the link. These turning rates cannot be controlled, since there is no traffic light
before the queueing section.

The model construction without distingushed lanes is appropriate for the model analysis, where
we do not need any exact values about the number of turning vehicles. If we have to distinguish the
turning directions from a compartment, we can apply an order rule. For instance, it is assumed
that the vehicles ‘stand’ in a compartment in such a queue, where each vehicle is followed by
another one that would like to turn to the other direction, than the previous.

In the compartmental traffic model we control the outflow of the compartments, analogously to
the real traffic, where the traffic light is placed at the end of the link. The movement of the mass
(i.e. the vehicles) in the network is ensured by a single variable called leaving flow rate, which is
discussed in the following subsection.

Note that subscript 0 will denote the environment in the sequel.

2Kapellplatsen in Géteborg, Sweden
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4.2 Leaving flow rate

This subsection introduces the notion of the leaving flow rate, which is the most important param-
eter of the compartmental traffic model.
The leaving flow rate combines the notion of the commonly used turning rate and the number

of leaving vehicles from a compartment.

Definition 4.1 (Leaving flow rate)
Let B;;(k) denote the rate of the leaving vehicles from i-th compartment to the j-th compartment

at time step k, i.e.
hji(k)
Bji(k) = 22(k) (4.1)

where h;;(k) denotes the number of leaving vehicles from the i-th compartment to the j-th at time

step k, and x;(k) denotes the number of all vehicles in compartment i at time step k.
For parameter 3;; the following constraints have to be satisfied:

0 < Bji(k) <1, (4.2)

n

0< > Bulk) < 1. (4.3)
i7i

The < 1 part in the constraint (4.2) ensures that none of the outflows at time step k+1 are greater

than the amount of the vehicles given in a compartment at time step k consequently, and negative

outflow cannot be obtained. The 0 < part follows from the directed property of the compartmental

network graph, and the modeling method. The value 0 as a lower bound ensures the positivity of

the system.

The constraint (4.3) describes that the sum of the outflows at time step k+ 1 cannot be greater
than the amount of vehicles present in the considered compartment at time step k. Equalities are
allowed i.e. 8;;(k) can be both 0 or 1. If there are no vehicles in a compartment only zero number
can leave it, in this special case 5;;(k) = 0, V5. If all vehicles in a compartment leave it during a
green signal, then 3;;(k) =1 or Z%ﬁ% Bii(k) =1 is taken, depending the number of outflows from
the considered compartment.

The leaving flow rate is very similar to the turning rate used in the SF approach (see Section
3.1). But there are two theoretical differences between the notion of turning rates and leaving flow

rates. On one hand, it is important to state that the amount > ;- B;;(k) does not have to be
1#i

equal to 1, unlike in [2, 3, 10]. On the other hand, the parameter /5 is based on the total amount
of vehicles in a compartment instead of just representing the rates of the leaving vehicles, as in SF
model.

4.3 Model equations

We formulate the model equations of the compartmental traffic model in this subsection, which
use the presented leaving flow rate.

In the sequel we rephrase the previously obtained dynamical equation as,

14



where the terms can be expressed as follows,

qi(k) = Zﬁij(k)él?j(k), (4.5)

J#i

hi(k) = Bi(k)i(k), (4.6)
=
0;(k) = Boi(k)z;(k). (4.7)

Substituting (4.5), (4.6) and (4.7) into (4.4) we can obtain:

n n
zilk +1) =ilk) + D Bis(R)as (0) = 3 BulW)za(k) - Bos(h)aa(k) + (k). (48)
T =

We can state that our compartmental traffic system has a bilinear structure (Definition 2.13).
The obtained dynamical equation is very similar to a system presented in [17]. But the com-
partmental models in the field of biology are in continuous time domain, and contain a term,
which is constructed by a coefficient matrix and a vector of the control inputs. The state in the
compartmental traffic system does not depend on the pure control input.

We can compose a matrix equation from the above formula not only one way. Both the state
variables (z;(k)), and the control inputs (5;;(k)) can be factorized out. In part 4.3.1 the control
inputs are stacked into a distinct vector. After the matrix equations, the properties of the system
matrix are discussed. In part 4.3.2 the state variables are factorized out, and discussed.

4.3.1 Matrix equation form 1

This subsection contains such a matrix representation, where the control inputs are factorized out
to a distinct vector.

In an n-dimensional compartmental system the matrix equality (4.9) is valid. In this equation
the parameters § with the same indices (i.e. §;;) are also indicated. In practice the reverse turning
from i-th compartment to the same compartment is however not permitted. This condition is
therefore considered as full 0 columns in matrix B. The full 0 column is located at the i-th column
of each part matrix B;. To simplify notations we decompose B. In virtue of shorthand notations
(4.9) can be rewritten to (4.10),
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and (4.10) can be further simplified to equation (4.11) as:

x(k+1) = Ix(k) + Bu(k) + d(k), (4.11)

where I € N**" x(k) e N**" B € N**P u(k) € NP, d(k) € N*, and p = n(n + 1).
Some remarks on the value of p are discussed in the sequel. The previous value of p is only

a theoretical amount, since it assumes all mathematical possible connections among the compart-

ments. If we do not permit the turning from a compartment to the same, the value of p has to be

decreased with n. Thus, we obtain p = n - n for the maximal number of connections.

This problem can be considered in another way. If we have n pieces of points, we can connect

them by n-n — n lines. The lines represent the turnings in the traffic, and points represent the

compartments. In theoretical case each compartment has connection to the environment, therefore

we have to increase the previous amount with n. We obtain n - n for the number of connections in

the entire network, which coincides with the result of the another approach.

Now, the properties of matrix B are discussed.

1.

All column sums are zero in B, since always the same state appears in a column with diverse
signs. This property reflects the mass-conservation, i.e. all vehicles that entered the network,

will exit.

The row sums in each row are as follows:

n n
le(k) —x;(k) = (Z xg(k:)> —2x;(k), (4.12)
1=1 =1
I#1

where [ denotes the number of compartments, and ¢ denotes the row index in the matrix B.
We can define this as an asymmetric mass difference, or mass-balance indicator.
The i-th column is a 0 column in the part matrix B;,7 # 0.
The part matrices B;, 4 # 0 are said to be column conservation matrices. A column conser-
vation matrix can be obtained as a negative transpose of a Laplacian matrix [22]. Column
conservation matrices have the following properties:

a) They are negative semidefinite matrices (Definition 2.4).

b) The 0 always appears as an eigenvalue.

¢) The vector 1 1 --- 1} is always an eigenvector of the column conservation matrices.
Taking points 3 and 4 into account we can state that all part matrices B;,¢ # 0 has at least
two 0 eigenvalues. One is associated with the zero column, the other is obtained from the
linearly dependent columns.
The number of nonzero columns in each part matrix B;,7 # 0 is equal to the number of
inflows (except the input demand) into the i-th compartment.

Consider the part matrix B;,¢ # 0 belongs to the i-th compartment. In this matrix the
nonzero columns have the same index as the compartments which send mass to the i-th

compartment.

The trace of the part matrix B;,7 £ 0 can be calculated as:

n n
tr(B;) = —le = —le -z, (4.13)
1=1 1=1
I#i
where [ denotes a counter for compartments.
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4.3.2 Matrix equation form 2

We can factorize the states out to a detached vector from (4.8) in the presented way.

The other matrix form of model equation (4.4) can be written as follows:

x(k+1) = Ax(k) + d(k) (4.14)

where vectors are defined in the space R", and A € R"*™.

The terms of the equation 4.14 are the following matrices and vectors.

1= 3 81 (0) — Bon(h) - Bi(k) Bin(k)
i1
A— Bir (k) e 1= i Bji(k) — Boi(k) - Bin (k)
j=1 )
J#i
B (k) 3 Bui (k) 1= 3 Bnlk) — Bon(k)
P
L J#n |

(21 (k+1)] a1 (k) dy (k)

x(kt 1) = [kt 1| x0) = |2k A0 = |0y

_xn(k.+ 1) xn(k) dn(k)

The matrix A has the following properties.

6.

. The matrix A is a compartmental matrix since it fulfils the requirements of Definition 2.5.
. The sums appear in the diagonal entries correspond the constraint in equation (4.2).

1
2
3.
4

The column sums are 1 — By, Vi.

. The eigenvalues of matrix 4, denoted by A, are its diagonal entries, representing the remaining

rate of the vehicles in each compartment. The remaining rate of vehicles is definied by the
formula: 1 — 2?21 ;i Bji(k). Thus, each eigenvalue of the matrix A satisfy the inequality
0< N\ <1, Vi

The trace of A is as follows,

trA =Y 1= Bji(k) - Boi(k)| - (4.15)
i=1 j=1
J#i
This amount represents the total number of remaining vehicles in the network at each time

step (‘before’ the inflowing vehicles arrive).

The matrix A has full rank, if the condition Y j—o 8;:(k) < 1, Vi is fulfilled.

JjFi

Based on the previous expositions we can define the discrete time compartmental traffic system

with infinite capacity.

Definition 4.2 (Discrete time compartmental traffic system with infinite capacity)

The discrete time compartmental traffic system with infinite capacity is definied by the difference
equation (4.11). At the same time for parameters 5 (Definition 4.1) constraints (4.2), and (4.3)

have to be satisfied.
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Why can the defined model be a compartmental model? The mass-conservation is ensured by
the definition of the parameters of leaving flow rates (Definition 4.1) and by the constraints (4.2),
and (4.3). Due to these restrictions one cannot let flow out more vehicles from the compartments,
than the present number in it. However, the compartments do not have infinite capacity. The
model equation cannot treat this property, so we have to introduce other constraints to take this
fact into account.

4.4 Capacity constraints

In the foregoing subsections we have assumed that the compartments have infinite capacity re-
specting the number of vehicles present in the compartment. Unlike this assumption, the real road
links have finite capacity, thus capacity constraints are introduced for the compartments.

The constraints on 8 were discussed above. Other restrictions are required to introduce the
finite capacity of the compartments. The introduced CTM (see Section 3.2) differs from the
compartmental approach, but the restricting principles can also be applied here, therefore part of
those are adopted in the sequel.

In the compartmental approach the first constraint in (3.11) is satisfied by conditions (4.2) and
(4.3). To fulfil the constraints of (3.11) related to the transmission and the receiver compartment,
new conditions have to be declared.

The finite capacity of the trasmission is ensured by the throughput of the transmission rate,

calculated from other properties of the network.

Definition 4.3 (Transmission throughput rate)
Suppose only unit vehicles with length l,.j,, which hold the same following distance (ls,;). Based
on the above variables the transmission throughput rate from compartment j to compartment 4

can be obtained as,

1

T,‘,j(k) = (416)

l'ueh + lfol7

vmaz

veh
et

where v, ., denotes the permitted maximal velocity in unit (%), and [r;;(k)] =
This throughput highly depends on time and the actual traffic situations, since in congested com-
partments the vehicles are not able to move with free flow speed (vpqaz). The defined transmission
throughput rate can be used only in uncongested cases. Now, this value will be assumed constant
for all compartments. Therefore, all connections have the same maximal throughput. This amount
is only an upper bound on the real performance of the transmission, since its definition contains
theoretical values. Theoretical, since the the traffic low does not consist of uniform vehicles with
uniform drivers with the same following distance and vehicle length. For instance, trucks and buses
have significant different properties compared to the cars. If the control of the intersection would
depend on this ultimate maximal transmission rate, we could not reach the expected flow capacity.
To eliminate this inaccuracy, an error term will be introduced into the model (see Section 6.2).

It is important to note that this throughput rate is not the same as the maximal flow rate on
a link (compartment), while the dimension of the two amounts is the same (—2_). The trans-
mission rate describes the connection, the link capacity rate is related to the link (compartment)
itself.

In the compartmental traffic model each flow was given in the unit of vehicles (veh). In favour

veh

of the consistency of units the transmission throughput rate, given in measure (T)7 has to be
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reduced to this measure. Hence we introduce the variable Ty which denotes the sample time,

measured in seconds.

Definition 4.4 (Maximal transmission)
The maximal transmission from the compartment j to compartment i is given by the following
formula:

7’/ = ’I“iJTS. (417)

4,J

The maximal capacity of a compartment is assumed to be time invariant, and is in the sequel

denoted by z[***. By the following condition can be considered the empty place in the receiver

compartment. The next inequality has to be held to the input flow to i¢-th compartment at time
step k+1,

gi(k+1) <" — z;(k). (4.18)

Both the maximal transmission and the maximal capacity of a compartment limit the number

of inflow vehicles. A minimum condition can be given between these values, similarly to (3.11) by,

q:(k) < min{r! ;277 — 2,(k)}. (4.19)

%

The equation (4.19) can be written more detailed as,

n
> Bij(k)a; (k) < min{r] ;, 2" — z;(k)}. (4.20)
j=1
i
Actually, the left-hand side of the expression (4.20) means the inflow of a compartment itself, the
right-hand side contains restrictions to the inflow. There can arise such cases, if the inflow remains

below the capacity constraints. To handle this fact, the peak number of the entering vehicles into

a compartment (g;(k)) at time step k can be computed by the definition:

Definition 4.5 (Peak number of entering vehicles into a compartment)

The peak number of entering vehicles into compartment ¢ at time step k is given by the condition:

gi(k) = min ¢ > Bi;(k)a; (), rf j, & — zi(k) o . (4.21)
j=1
J#i

4.5 A special connection

In compartmental traffic systems a special case of the connections can be found. A further consid-
eration has to be introduced at the computing of the input and output flows at these connections.
They are special, since at the entry point of these connections more than one connections start to
other compartments, and at the same time, at the endpoint of these connections more than one
connections join to the same compartment (shortly called as n:n connections). To demonstrate
this special case, let us examine the depicted part of a compartmental system in Figure 4. The
connection [y is considered as a special connection.

The compartment b obtains input from the compartments a and ¢. The compartment d has
one input, arriving from the compartment c¢. The capacity of each transmission is supposed to be
the same, i.e. rgz 41 =1, Vi. How should the input and output flows be computed, if the second or

the third term in condition (4.21) is in action in point of compartment b?
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Figure 4: Network for demonstrating the special connection

At time step k + 1 we assume that r < Y j=1 Bpj(k)z; (k) < 27**® — x,(k). Thus the inflow of
j£b

J
the compartment b compartment will become 7. This amount has to be divided into two parts, an

input from compartment a, and one from compartment c. More exactly, from each neighbouring

compartment an amount hy;(k) By, (k)x;(k) arrives to compartment b, where

B r
2 By (k) (k)

j € {a,c}. If we use this method, the proportions of 8 parameters are still considered, and no
more vehicles can flow out from a compartment than the number present in it. Naturally, if the
term x}"*® — x3,(k) is the smallest one, the output of the compartments a and c can be obtained
zy " — xp(k)

=By (k) (k).

> Boj(R)a; (k)"

Remark: this special connection is not permitted in the CTM approach. The connection is

as hy;(k) =

divided into two connections by the help of an artifical cell [8]. We cannot relate any real network
part to this artifical cell, it is only required for the modeling.
Now we are in the position to define the discrete time compartmental traffic system with finite

capacity.

Definition 4.6 (Discrete time compartmental traffc system with finite capacity)

The discrete time compartmental traffic system with finite capacity is defined by the difference
equation (4.9). At the same time for parameter  (Definition 4.1) constraints in (4.2), and (4.3)
have to be satisfied. Furthermore, condition (4.21) has to be held.

4.6 Simulation examples

In this section, we analyse a small-scale traffic network from compartments point of view. The
network topology is depicted in Figure 6. We suppose that only the depicted mass transmissions
have nonzero leaving flow rate. For the sake of simplicity the parameters 8 are supposed to be
time-invariant and can be seen in Table (1). The disturbances (d;(k), ds(k), ds(k)) are the same
step functions, depicted in Figure 5. The model equation of this example network is presented in

the sequel.
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Figure 6: Example network

Two time domain simulations have been prepared over this network topology. In the first case,
each compartment has infinite capacity, so the system matches Definition 4.2. The second case is
based on Definition 4.6, thus the system was assumed as a finite capacity compartmental system.
Capacity constraints were introduced as follows. Maximal transmission r;Z 11, Vi is time-invariant,
and has a value of 100 vehicles per time step. The maximal compartment capacity (z*** Vi) is
supposed to be time-invariant with rate equals to 100 vehicles, as well. The input compartments 1,
5, 8 have infinite capacity, similarly to the CTM approach. The simulation results with the infinite
capacity case can be seen in Figure 7 and the results with finite capacity in Figure 8, respectively.

The infinite capacity system empties three times faster than the finite one. In the latter case all
states have oscillation, since the empty compartment is filled with vehicles in one step. Definitely,
in the next step it will be emptied. As it can be seen in Figure 8, two types of oscillation can be
separated. The state variable x7 changes its value between the possible borders, namely between
zero and the maximal capacity (z7***). The other type of oscillation is presented by the state
variable x4, which remains between two intermediate values.

The explanation is very simple. If at the second time step the number of entering vehicles
is equal to (or would be more than) the maximal capacity of the considered compartment, the
appropriate state variable reaches the upper border. At the third time step zero number of vehicles
can enter the compartment, since it is saturated. At the same time, all of the present vehicles can
leave it. At time step four the maximal number of vehicles can flow in again. This process continues
until more vehicles would like to enter the compartment, than it can receive.

Now let us consider the other oscillation. The number of entering vehicles into compartment @
is denoted by ¢;(2) at time step 2. The inequality ¢;(2) < zI"** is supposed. Thus, there is empty
space in the compartment ¢, which has a value of z"** — ¢;(2). At the third time step the vehicle
set ¢;(2) leaves the compartment, and z7*** — ¢;(2) can enter it. At the fourth time step the latter
value will be the number of leaving vehicles. This oscillation goes on until more vehicles would like

to enter the compartment, than it can receive.
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Figure 8: Results with finite capacity
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Let us examine how the state variables change, if the outflow to the environment is bounded,
i.e. for the parameters Bo;(k) the equality Bo;(k) = 1, Vi not valid. Bos, Bos, and Bo7 are modified,

as it can be seen in Table 2.

Ba1 Bs2 Bis Bez Bes Bra Brs Bos  Bos  Por
08 05 09 05 03 06 09 08 05 0.6

Table 2: Modified leaving flow rates

The matrix A can be written by using the above 8-s as,

02 0 0 0 0 0 0

0.8 0 0 0 0 0 0

0 05 02 0 0 0 0 0

A 0 0 01 09 0 0 0
0 0 0 01 O 0 0

0 05 0 03 0 05 0 0
0 0 06 O 0 04 09

0 0 0 0 0 0.1

The results are depicted in Figure 9.
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Figure 9: Results with finite capacity and modified leaving flow rates

As it was expected, there are no more long oscillations at any state variable. The exhaustion
needs more time compared to the case with unbounded environment outflow. As the parameters
Bo; approach even the value of 1, even more oscillation will be produced by the system. At low

leaving flow rates to the environment the state variables reach a constant value after some transient.
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This value is held until the number of vehicles - intending to inflow these compartments - is greater
than the maximal capacity of the compartments.

The exhaustion is demonstrated by the following small example. Let us assume that Sy; = 0.5,
and the peak number of entering vehicles to compartment 1 is g; = 100 vehicles per time step,
time independently. Initially compartment 1 is empty, i.e. £1(0) = 0. At the first time step the
peak number of entering vehicles can flow into compartment 1: z;(1) = 100. At the second time
step the compartment is full, thus no vehicles can flow into it, but half of the present vehicles flow
out: x1(2) = 50. At the third step 50 vehicles flow in, and the half of the present 50 vehicles flow
out: the result is z1(3) = 75. The fourth time step changes the state z; as: 25 vehicles flow in,
and 37 vehicles flow out, the remaining amount is x1(4) = 63 vehicles. This method can be carried
on, the ‘equilibrium’ number will be 65-66.

By the following examples can we examine how is affected the outflow by choosing one outflow
to the environment as 0. The compartments without any output are said traps, [24]. The referred
thesis contains conditions and theorems about the existence of traps. Firstly, 5o = 0 has been
applied, in the second case Byp7 = 0 was chosen. The other leaving flow rates have a value between

0 and 1, as it is given in Table 3.

521 532 /645 662 /864 574 578 /603 506 ﬁ07
08 05 09 05 03 06 09 08 0 0.6

0.8 05 09 05 03 06 09 08 05 O

Table 3: Modified leaving flow rates

Two inflows can be recognized at compartment 6. It receives vehicles from compartments 2
and 4. If we prohibit the outflow from compartment 6, i.e. a trap is constructed, the behaviour
of the network changes. As it was expected, compartment 6 reaches its capacity, and this state
does not decrease during the entire simulation. The trap compartment keeps the vehicles in itself.
By comparing Figure 9 to Figure 10 can be stated that the time required to empty the non-trap
compartments is greater by a multiplier 1.5, than in the trapless case. The compartments, which
send vehicles to compartment 6, are connected to other compartments, as well. Therefore, after
the saturation of compartment 6 they do not become saturated. The outflow from compartment 4
to compartment 7, and the outflow from compartment 2 to compartment 3 still trasmit vehicles,
thus the compartments 4 and 2 will be empty, but after a longer time.

Let us consider the Figure 11, which depicts the results obtained by prohibit the outflow from
compartment 7. In this case compartment 8 cannot send any vehicle to other compartments, since
it has only one outflow to compartment 7, which cannot receive more mass after its saturation.
The degree of the diminish is smaller in compartments 4 and 5, since they are connected to the
trap compartment.
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Figure 10: Results with trap at compartment 6
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5 Model analysis

The presented compartmental traffic model is examined in point of view the stability, controllability,
diagonalizability, and eigenvalue sensitivity in this section. The knowledge of these parameters is

required in control synthesis.

5.1 Stability

Initially, we will distinguish between two cases in stability analysis. Firstly, the compartmental
traffic system is examined with constant parameters 8. Secondly the parameters § are allowed to
change. Actually, the latter case corresponds the real control method.

5.1.1 Stability analysis with constant (5

Let us examine the stability property of the autonomous compartmental traffic system in Lyapunov-
sense (Definitions 2.14 and 2.15). Therefore, the system equation (4.14) is modified. It is assumed
- for the reason of stability analysis - that all disturbance inputs are zero, thus the difference
equation is simplified to:

x(k + 1) = Ax(k). (5.1)

In stability analysis it is common to introduce a quadratic Lyapunov function to adress stability
by dissipativity [22]. (The Lyapunov function is usually denoted by V.) The general quadratic
form is V(x(k)) = xT (k)Px(k), where P is a positive-definite matrix (Definition 2.3). Instead of
this form, at compartmental systems we can choose a linear Lyapunov function, as it is stated
in [5]. The Lyapunov-function is always constructed by such a parameter, which can express the
changings in the system, and it is expected that its amount decreases, if the system approaches

the equilibrium point. The amount of mass in a compartmental system meets these requirements.

V(x(k)) = eTx(k), (5.2)

where e = [1 1 - 1] € R™. Practically, in this special case the Lyapunov function rep-
resents the sum of the mass (number of vehicles) in the network at time step k. Consider the
difference AV (x(k)) as,

AV (x(k)) =V(x(k+1)) - V(x(k)), (5.3)
V(x(k)) = eT Ax(k) — eTIx(k), (5.4)
AV (x(k)) = e (A = T)x(k), (5.5)

where I is the n-dimensional identity matrix. The compartmental system given by (5.1) is stable,
if AV <0, Vx(k) # 0. After some calculation we can obtain:

AV(x(K) = [=Bor(k) - —Boi(k) -+ —Bon(k)| x(h). (5.6)

In this consideration, AV (x(k)) always equals to the outflow to the environment. The amount
AV (x(k)) is always negative, since (4.2) is valid for the entries of the above row vector, if 5o;(k) # 0
for at least one ¢. More, the entries of x(k) are always nonnegative, since the compartmental traffic
system is a nonnegative system (Definition 2.11). It follows that the compartmental system without
disturbances is stable. If the entire mass can flow out through an exit, the equilibrium point is
zero. Zero is a stable equilibrium point for such a system (x. = 0). If the autonomous system is
disturbed with finite energy, the meaning of the stability is to returned to the equilibrium point.
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On the other hand, if there are compartments in the network without outflow (i.e. traps), the
equilibrium point will be the sum of the mass in these compartments.

The traps can play an important role in compartmental traffic systems. They can be considered
as parking lots, if - exceptionally in this case - reverse traffic flow is permitted from the trap
compartments to the neighbouring compartments, which connections represent the re-entering of
the vehicles to the road network.

The observations can be formalized as follows. Let us denote by T the set of compartments,
which does not have an output to the environment or to other compartments, and by x. the
equilibrium point of the system. There is such a notation of compartments, in which compartments
without output have subscripts ¢, + 1,--- ,4 + m, if there exist any compartment with such a
property. If the following equality is held in & — oo, T = {0}, for the equilibrium point x, = 0 is
fulfilled.

Proposition 5.1

If T ={i,i+1,--- ,i+ m}, the equilibrium point of the autonomous system can be obtained as
Xe = Z;Zn x;, where k — oo. This equilibrium can be considered as unstable equilibrium with
infinite capacity compartments.

The latter case can be demonstrated by the following small example (Figure 12).
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Figure 12: Compartments without output

The mass can flow from compartment ¢ —2 to compartments ¢—1 and ¢. Similarly, compartment
1 — 3 give mass to compartment ¢ + 1. Reverse directional flow is not permitted in this network.
The compartment ¢ — 1 has a connection to the environment, thus the mass can flow out from it.
But compartment ¢ and 7 4+ 1 has only an input connection. If we stop the input to this network,
after a certain time compartments i — 3, i—2, and ¢ — 1 will empty, but the compartment ¢ and i+ 1
will not. (It is assumed, that compartment ¢+ 1 has greater, or infinite capacity than compartment
1—3)

According to [5] the compartmental system is asymptotically stable, if |A| # 0, i.e. the matrix
A € R™ has n eigenvalues different from zero (Property 6 on page 18). In other words, if by means
of network traps the vehicle mass is cummulating the network will not be emptied, and x = 0 is
not a feasible and stable equilibrium, as it was before.
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Let us consider another approach to obtain information about the behaviour of the compart-
mental system. If the initial state vector x(0) can be written as a linear combination of the

eigenvectors of the system matrix A as,
n
x(0) = Zcivi7 (5.7)
j=1

where ¢; denotes constant values, and v; denotes the eigenvectors of the matrix A. The dynamical
equation of the autonomous system can be obtained from (4.14), for x(1) we come to the following

equation by substituting the previous formula:
=1

It is required to make the previous step that the matrix A has n different eigenvectors (i.e. n
eigenvalues different from zero), which means in this case that any compartment cannot have

S o Bii = 1, V.
Expanding the sum in (5.8) can be obtained as,

x(1) = Acyvy + -+ - + Acp v (5.9)
Considering the Definition 2.2, we further simplify (5.9),
x(1) = MIcyvy + - 4+ N Iep v, (5.10)
The right-hand side of equation (5.10) can be formalized as the product of two vectors as,
C1Vi

x()= [T ) || (5.11)

CnVn

(The unit matrix provides the appropriate matrix dimensions.) By progressing the time to the

time step k we obtain the state vector as,
x(k) = A*x(0). (5.12)
The equation (5.12) can be cast into the form of (5.11) as,

C1V1
x(k) = [AFTF . ONRTR[ | (5.13)

CnVn

We know from the eigenvalues of the matrix A that they fall to the range [0 1] (Property 4
on the page 18). Therefore, the vector of A-s will have even smaller entries by the continuous
multiplication. Thus, the entries of the state vector of the autonomous system will decrease
continuously in the future, i.e. the number of vehicles will diminsh during the time resulting in a
stable system.

If there is a trap in the compartmental network (i.e. one or more compartments do not have
any output), the eigenvalue belonging to the trap has the value of 1. This entry will not decrease
by the multiplication of the vector of A-s by itself. Thus, the corresponding value ¢;v; will hold its

initial value, i.e. the number of vehicles does not decrease.
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5.1.2 Stability analysis with changing (5

The stability derived from the remaining number of vehicles can be computed only pointwisely,
if we do not assume any pattern in G-changes. Because of the change of the parameters (3, the
equilibrium point changes its value at each time step. Asymptotically stable condition cannot be
stated in this case.

If the compartmental network does not contain any traps, the local equilibrium can, however,
be ensured. Urban traffic networks (without parking lots) can be considered as trap-free networks,
but traps may be produced by the parameters 3-s. Theoretically, 8;; can have its value between
0 and 1. The j-th compartment with 3;; = 0 can cause the arise of traps. But if we introduce
minimal green times greater than zero as constraints, it can be easily seen that to this minimal
green time cannot correspond the 3;; = 0, but a 8;; > 0. Thus, a trap-free network cannot be

converted into a trap-network.

5.2 Controllability

The reachability of discrete time nonlinear systems is given by Definition 2.16. This definition
can be simplified to Definition 2.17 at LTI systems. Remark 2.18 builds a connection between
the reachability and controllability properties. At discrete time bilinear systems matrices can be
composed to examine the controllability of the system, which are diverse from the controllability

matrices of linear systems.

Proposition 5.2
The matrix A can be inverted, if it has n linearly independent eigenvectors (n eigenvalues different
from zero). In case of the compartmental traffic systems the matrix A has n linearly independent

eigenvectors, if any compartments do not have the property Z?zoj# B = 1.

In order to give a necessary and sufficient condition for local controllability, a decomposition of
the dynamical equation (4.11) is required [11]. More specifically, we have to rewrite the bilinear

term into a sum, as it can be seen in equation (5.14):
P
2(k+1) = Ax(k) + > w(k)Qux(k) +d(k), (5.14)
=1

where p = n - n in case of the compartmental traffic systems.

Our system can be cast into the above form, started from the second matrix equation repre-
sentation (4.14). The terms 1 in the diagonal can be stacked into a distinct matrix. Thus, the
remaining matrix contains only f;;(k) values, and the unit matrix correponds the matrix A in
(5.14). With this reformulation we obtain,
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By reason of size limits the term with the sum in (5.14) will not be detailed, but we show one

term from this sum. The entry intersected by the first row and the i-th column can be distributed

as follows VI € {1---p},

0 1 0 .113‘1(k)
Bu(k) [0 -+ =1 -+ 0f |a4(k)
W—/ .
uy .
0 0 0] [zn(k)
L L i
Q x

(5.16)

The matrix Q; is a square matrix with dimension n, and contains only +1 and 0. We can find

1 in that entry of the matrix Q;, where u; has a positive value in matrix A, i.e. the compartment

denoted by the row index receives mass from the compartment denoted by the column index of

matrix Q;. Similarly, the -1 value stands in such a position in the matrix Q;, where the control

input u; has a negative sign in the matrix 4, i.e. the compartment denoted by the row index sends

mass to the compartment denoted by the column index of matrix Q;. In the diagonal entries of

Q; only -1 and 0 can stand, and in the off-diagonal field we can find only 1 and 0 values.

In case of B;;(k) ¢ # 0 the matrix Q; contains only one -1 in the diagonal, and a single 1 in

the same column when the -1 stands. In case of 5;;(k), ¢ = 0 the matrix Q,, contains only one -1

in its diagonal.
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Definition 5.3 (Local controllability of discrete-time bilinear systems [11])

The discrete-time bilinear system
p
o(k+1) = Ax(k) + > (k) Qix(k) (5.17)
1=1
is locally controllable on the interval [0, N| if and only if rank C = n, where
C— QAN 'x(0) AQIANx(0) - (5.18)

AN_lQIX(O) QpAN_lX(O) AQ;DAN_QX(O) AN_lpr(O)}, (5.19)

where x(0) # 0, with a control sequence satisfying that,

ouy ou,,
A+u1Q1+~-~+upr+Q1x(k)m+-~-+me(k)T (5.20)

has full rank (C has dimension n x Np). The last matrix has to have full rank at each time step k.

Let us build the matrix C from the matrices of the compartmental traffic system. Since the
matrix A is a unit matrix in this approach, its powers are also unit matrices. The matrix C will

be simpler, as it can be seen in the following formula:

C=[Qix(0) - Qix(0) Qx(0) -+ Qux(0) Qux(0) - Qx(0)].  (5:21)

N N N

In this hypermatrix N-N columns are the same. Recall that there is only one non-zero column
in each Q;. In general case there are n - n different piece of matrix Q;, thus there are n - n
non-zero columns in the matrix C. These columns are linearly dependent. There are n pieces of
columns (these belong to the connections to the environment), in which only one -1 stands in the
diagonal. This set of columns is linearly independent, and can be considered as a basic vector
system for C. All other column can be expressed by a linear combination of the elements of the
basis. For instance, let us consider a compartmental network with 3 compartments, and all possible

connections, as it is depicted in Figure 13.

Bo1 (k)| 1 ) Bar (k) 2 Lo Bo2 (k)
Br2(k)

Baz (k)

Bis(k) Bs1(k) Baa(k)

xs3

Boz (k)

Figure 13: Compartmental network with all possible connections
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The Q matrices are given by,

-1 0 0 -1 0 0 0 1 0 0 O 0 0 O 0 0
0 0 0 1 00 0 -1 0 -1 0 0 0 1 0 0 O
1 00 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 -1

-1 0 O 0 0 0 0 0 O

0 0 0 0 -1 0 0 0 O

0 0 0 0 0 O 0 0 -1

The above matrices span a convex hull, which coincidences the hull of the controllability matrix

C. The following matrix contains the nonzero columns of the matrix C.

-1 -1 1 0 0 1 -1 0 0

1 0o -1 -1 1 0 0 -1 0|x(0) (5.22)

0 1 0 1 -1 -1 0 0 -1
It seems clear that the first six columns in the matrix (5.22) can be made as a linear combination
of the last three columns, which are linearly independent. Moreover, these vectors compose an
orthonormal basis. Thus, it is valid for the matrix C that rank C = n = 3, which corresponds to
Definition 5.3.

If we would produce a trap in this compartmental network by setting the leaving flow rates
Bji(k), ¥j # 0 of any compartment, the controllability of the network would not change. Two
matrices Q would be zero matrix, but the last three matrices Q would not be affected. By
choosing one or two By; = 0, the equality: rank C = 3 is valid. It can be easily seen that to network
topologies without any outflow to the environment can be related a controllability matrix without
full rank. For instance, the last three columns in the matrix (5.22) are full-zero columns. Three
pairs of columns can be found, where the sum of vectors is the zero vector. Thus, the columns
first, second, and fourth remain. The fourt can be expressed as the difference of the other two. We
can found only two linearly independent columns, which means that the controllability matrix C
does not have full rank.

Let us consider the condition related to the control input sequence. In the matrix (5.20) the

u; terms are independent of z, since they are only the 3;; values. Therefore au(;)({k) =0, Vi. Thus,

the last p term of this matrix is zero. The remaining part is
[A+u Q1+ +u,Qypl (5.23)

which coincides the matrix A in our model. The full rank condition is given formerly among the
properties of matrix A (Property 6, on page 18).
Basically, each compartmental traffic system with a ‘normal’ structure is controllable. However,
by changing the control inputs, the system can become uncontrollable in a couple of ways. Namely:
1. Each outflow to the environment By; Vi becomes zero.
2. So many f3-s become zero, that there are less connections with 3;; > 0, than the number of
the compartments.
3. All of the (-s related to a compartment becomes zero at the same time. (The disturbance
cannot be considered as inflow.)
4. Some connections become zero such a way that the entire network splits into two or more
independent parts, which parts are not connected to each other.
The last scenario is depicted in the Figure 14. If the 35 changes to 0, the compartments 1-2
and the 3-7 are detached from each other.
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Figure 14: Uncontrollable network

5.3 Diagonalizability

With the help of this technique the original system can be decoupled into subsystems, which
have their own inputs, disturbances, and control. Actually, the diagonalization is a state-space
transformation in the dynamic description. In the diagonal representation the system matrix A
has a diagonal form, which is denoted by A4, in the sequel. To transform the original state-space
to diagonal, a transformation matrix is required. The transformation is defined as follows

x = TX (5.24)

where T is the transformation matrix, and X is the state vector in diagonal representation. The
state-space transformation exists, if the transformation matrix T has full rank, i.e. it is invertible.

Recall the model difference equation (4.14):
x(k+1) = Ax(k) + d(k). (5.25)

Substituting (5.24) into the model equation yields:

Tx(k+1) = ATX(k) +d(k), (5.26)
X(k+1) =T 'AT=(k) + T 'd(k), (5.27)
x(k+1) = Ax(k) + d(k), (5.28)

where A = T1AT, d(k) = T 'd(k). The structure of the matrix T is very special. The
transformation matrix is the modal matrix of A (Definitions 2.6, and 2.8). It follows that the
matrix A has to have n linearly independent eigenvectors (n eigenvalues different from zero), to

build a non-singular matrix T.

Proposition 5.4
The state-space representation of the discrete time compartmental system can be cast into diagonal

form, if the matrix A has n eigenvalues different from zero, i.e. if the condition > j—1 Bj;(k) # 1 is
J#i

satisfied.

Proposition 5.4 is based on Theorem 2.7.

For instance, let us consider the example network in Figure 6. If the parameters S have the
values as can be seen in Table 4 at time step k, the state-space representation can be rewritten a

into diagonal form.

521 532 545 662 564 574 578 /303 /806 507
085 0.2 095 05 03 06 072 075 05 0.6

Table 4: Leaving flow rates
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As demand input we have d; = 100, d5=200, and ds = 300 vehicles per time unit at the time

step k. The matrix equation of this network is as follows,

(5.29)

(5.30)

(5.31)

(5.32)

[z (k+1)] Jo1s 0o o o 0o 0o o 0] [x@®]| [100]
zo(k+1) 085 03 0 0 0 0 0 0| |za(k)
zs(k+1) 0 02 025 0 0 0 0 0| |xs(k)
ek +1)| |0 001 095 0 0 0 ||wk)|,
zs(k+1)| | 0 0 0 005 0 0 0 | |zs(k) 200
z6(k+1) 0 05 0 03 0 05 0 0 | |agk) 0
z7(k+1) 0 0 06 0 0 04 072| |z:(k) 0
zs(k+1) 0 0 0 0 0 0 028 |2s(k) 300
The transformation matrix T is built by the eigenvectors, and its inverse are the following
matrices,
0 0 0 0.0664 0 0 0 0
0 0 0.2074  —0.3760 0 0 0 0
0 1.0000  0.8296 0.7521 0 0 0 0
T — 0 0 0 0 0 0.4240 —0.4775 0
1o 0 0 0 0 0 0.0251 0
1.0000 0 —0.5185  0.5372 0 —0.3180  0.3183 0
0 0 0 0 1.0000 —0.8480 0.8186 —0.9864
0 0 0 0 0 0 0 0.1644
[ 6.0714 2.5000 0 0.7500 1.5833 1.0000 0 0
—34.0000 —4.0000 1.0000 0 0 0 0 0
27.3237 4.8218 0 0 0 0 0 0
-1 _ 15.0695 0 0 0 0 0 0 0
B 0 0 0 2.0000 5.4286 0 1.0000 6.0000
0 0 0 2.3585 44.8114 0 0 0
0 0 0 0 39.7912 0 0 0
0 0 0 0 0 0 0 6.0828
We obtain the diagonal state-space representation by,
%1 (k+1)] [0.1500 0 0 0 0 0 0 0
Xa(k+1) 0 0.3000 0 0 0 0 0 0
x3(k+ 1) 0 0 0.2500 0 0 0 0 0
x(k+1)| | © 0 0 01000 0 0 0 0
x(k+1)| | 0 0 0 0 0050 0 0 0
%6(k + 1) 0 0 0 0 0 05000 O 0
X7(k+1) 0 0 0 0 0 0 0.4000 0
xs(k+1)] | 0 0 0 0 0 0 0  0.8000
%1(k)] [ 1506.9453 ]
%o (k) 2732.3677
%3 (k) —3400.0000
xa(k)| | | 8962.2821
%5 (k) 7958.2471
%6 (k) 923.8095
%7 (k) 2885.7143
xs(k)| | 1824.8288 |

It can be observed that the disturbance vector has turned into the vector d after the eigenvalue

decomposition. In the diagonal state-space each compartment has its disturbance, unlike the
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generic form (5.29). Decoupled subsystems are obtained with specifically weighted d-terms, like
they were separate compartments.

The block diagram of the decoupled subsystems is depicted in Figure 15.

dy zi1(k+1) 1 z1 (k)
A1

d, Tn(k+1) 1 Ty, (k)
An

Figure 15: Block diagram of the diagonal representation

Actually, we used a well-known eigenvalue decomposition technique (Definition 2.6) to obtain
(5.32). Naturally, since we applied a state-space tranformation, the physical meaning of the states

will be changing. That is why they are denoted by overlined letters.

5.4 Sensitivity analysis

Let us assume that the system matrix changes because of a circumstance. It can be an interesting
question how the eigenvalues of the system matrix will change? The sensitivity analysis can
provide an answer. Based on the matrix norm (Definition 2.10) two parameters can be introduced
depending on [18]: the matriz condition number, and the eigenvalue condition number, denoted
by «(T) and x(\,.A), respectively. Note that in the matrix representation of the discrete time
compartmental traffic system the control inputs are placed into the system matrix A. Therefore,
the change of control inputs causes changes in the system matrix. In the following subsection, the

sensitivity of the matrix A is examined in terms of its eigenvalues.

5.4.1 Matrix condition number

This subsection highly depends on [18].
The nonsingular matrix 4 is examined from point of view sensitivity of its eigenvalues. The

eigenvalue decomposition (Definition 2.6) can be given as,
D =T 'AT. (5.33)

Let 6. A denote a change in the matrix A. Therefore, the eigenvalues have changes éD, as well.

Inserting these amounts into the previous formula, we come to:

D+0D=T"'(A+6A)T. (5.34)
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The changes of the eigenvalues are,
oD = T 15AT. (5.35)

By taking matrix norms,
16D < [[T7H] - [| T[] - [|I5All = K(T)||6.All. (5.36)

Definition 5.5 (Matrix condition number)

The matrix condition number, denoted by k(T) can be defined as,
K(T) = [[T7H| - |IT]l. (5.37)

(Remark: the above equation is valid for each p-norm.) Actually, the sensitivity of the eigen-
values is computed based on the eigenvectors. The number x(T) concerns all of the eigenvalues,
since it is a number. (On the other hand, it can be obtained as the product of two matrix norms,

thus it cannot be nothing else than a number.)

5.4.2 Eigenvalue condition number

This subsection highly depends on [18].
To define the parameter appeared in the title of this section, both the left and the right eigen-
vectors (Definition 2.2) of the matrix A are required.

Definition 5.6 (Eigenvalue condition number)

The eigenvalue condition number can be defined as,

Iyl - (vl

k(A A) = ar

; (5.38)

where y and v denote the left, and the right eigenvectors of the matrix A, respectively.

The deduction of this parameter can be found in [18]. There are distinct eigenvalue condition
numbers for each eigenvalue, which can be stacked into a vector. Thus, the parameter (A, .A) is
a column vector in this approach.

It can be deduced that the matrix condition number gives an upper bound for the eigenvalue
condition number, i.e.

k(A A) < k(T). (5.39)

According to [1] the large value of the eigenvalue condition number denotes that the examined
system matrix has eigenvalues close to each other. This parameter provides information how
homogeneous are the leaving flow rates. Moreover, the greater entries in the vector (), .A) show

which eigenvalues are more sensitive to the changes.

5.4.3 Examples

Matrix A of the example network in Figure 6 is examined again, but now from a point of view
sensitivity of the eigenvalues. Three different set of 5-s are applied for comparison. (The third row
is the same as Table 2, and the second coincides the Table 4.)
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Case Ba1 P32 Bas  Be2  Bea Pra B Boz  Bos Bor
1 0.78 0.9 0.5 0.05 065 03 0.89 1 0.7 0.6

2 08 02 09 05 03 06 072 07 05 0.6
3 08 05 09 05 03 06 09 08 05 06

Table 5: Leaving flow rates at diagonalizability

Matrix A belongs to the first row is the following

022 0 0 0 0 0 0 0
0.78 0.05 0 0 0 0 0 0
0 09 O 0 0 0 0 0
A 0 0 005 05 0 0 0
1o 0 0 05 0 0 0
0 0.05 0 065 0 03 O 0
0 0 0.3 0 0 0.4 0.89
0 0 0 0 0 0.11
The obtained results are stacked in Table 6.
Case 1 2 3
[19.5599] [15.0694] [4.5036 - 10167
84.6626 27.7459 11.8427
66.3156 34.2491 4.5036 - 1016
KO\, A) 4.3568 44.8734 9.5595 - 1012
5.1367 39.7912 9.5595 - 10
7.3384 6, 8689 3.1102
5.4333 8.3946 3.7417
_3, 2278 i 6.0828 | | 3.1623

x(T) 296.2547 158.6457 3.0399 - 1017

Table 6: Results of the sensitivity analysis

We can state that x(T) is greater than x(\,.A) in each cases. There are significant eigenvalue
condition numbers among the computed sets. In Case 3 there are large condition numbers, since
several eigenvalues are the same, i.e. the outflow proportion in compartments 1, and 3, resp. in
compartments 4, and 5 are equal. In this case, the compartments with the same outflow are
connected to each other. In the compartmental traffic system there are large condition numbers,
associated to the compartments with the same outflow rate, connected to each other, or in case,
if they are connected to the same compartment. This statement is explained more into details by
the following examples. In Case 1 there are equal eigenvalues (belong to compartments 2, and 4),
as well. But these two compartments are not connected to each other or to a same compartment,
thus the condition numbers do not have great values.

In the sequel we perform sensitivity analysis of the network, while changing the control inputs.
Recall the network example in Figure 6. The control inputs have been chosen as it can be seen
in the second row in Table 5. It is well known that parameters 8 have a value between 0 and
1. The behaviour of the network changes by these parameters. What would the matrix condition
number, and the eigenvalue condition number say us, if different §-s change their values? One
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could answer this property, if the control inputs are subjected to changes over the entire possible
set, with a small increment. Thus, the corrensponding parameter 3;; has been changed between 0
and 1, while the rest of the parameters were kept constant.

As first case, let us examine the changing of S45. This connection can be considered as a 1:1
connection, since at the sending compartment there is only one outgoing connection, and at the
receiver compartment there is only one incoming connection. The values of x(T), and x(X,.A)
are depicted in the following figures. By the latter parameter, each entry of the vector (A, A) is
depicted in a detached diagram.

Based on Figure 16, it can be stated that the changing of §45 will affect the behaviour of four
compartments. If we observe the figure accurately, we can appoint that these four compartments
are the receiving compartment of the connection, and such compartments, which are connected to
the receiving compartment. These compartments are called as the affected set of compartments,
in the sequel. The compartments are excluded from the affected set are not influenced by the
changing of observed connection. These statements can be verified in Figure 16.

The eigenvalue condition number belonging to the i-th compartment has a peak value, if (45

equals the amount > 7—1 3;;, and i is the element of the affected set of compartments. (Remark:

the peak values havejogder of magnitude of 10'5, but in the figures they are cutted down for
better visibility.) In case of the incoming compartment (in the present instance compartment 4)
more peaks appear, in the same position as by the neighbouring compartments. Actually, if the g
parameter of a 1:1 connection coincides with the outflow proportion of a compartment belonging
to the affected set, two eigenvalues will be more senisitive.

Naturally, the matrix condition number has peaks in cases of the above mentioned values of (5,
as well (see Figure 17). It builds an upper bound to the eigenvalue condition number. Remark:
the off-peak values are not zero, but they have quite neglectable value compared to the peaks.

According to my observations each 1:1 connection behaves the same way.
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Figure 17: The changing of x(T) caused by the changing of 845

How do the 1:n, n:1, and the n:n connections influence the behaviour of the system? Depending
on a couple of example, it influences the same way. For instance, let us consider the connection 6-2
with Bg2. The same experiment has been made, as by the 845. The results can be seen in Figures
18, and 19.
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Figure 19: The changing of x(T) caused by the changing of Bso

The obtained diagrams are very similar to the previous case, but there is an important dif-
ference. The affected set of compartments consists of the sender compartment of the examined
connection, as well as the compartments connected to the sender compartment. Apart from this,
the changes behave in the same way as by a 1:1 connection.

In case of the outflows to the environment (8y;), the affected set of compartments contains other
compartments. All of the compartments, from which the examined outflow to the environment is
accessible, belong to the affected set. The results can be seen in Figures 20, and 21.

There is a peak in the changing of the eigenvalue condition number at the ¢-th compartment,
if the changing (Bps has the same value, as the sum Z;l:l Bji- The eigenvalue condition number

belonging to the compartment 6 has three peaks, on the]f(é)lcations, where the other elements of the
affected set.

As summary, we can say that, the condition numbers are connected with the structure of the
graph in a certain sense. They have peak values, if connected compartments have the same leaving
flow rate. The independent compartments with the same outflow do not cause such changing in the
condition numbers. A low value of x(A,.A), or £(T) indicates a heterogeneous eigenvalue structure,
i.e. the leaving flow rates have distinct values. The theory of the presented sensitivity analysis can
be related to the unicity of the solution of difference equation.
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6 Further research directions

Some topics are proposed in the sequel, which have to be examined more detailed. The introduction
of green times into the model, the consideration of the uncertainties in the compartmental traffic

model are skimmed. A review of the possible way of controls is presented, as well.

6.1 Green times

To influence traffic flow in urban area, we often use traffic lights. In traffic modelling it is a
reasonable question, how we compute the green time, as the effective control input. We have to
connect the outflow of the road links with the green time in a suitable way. The SF model applies
a leaving capacity for each link (denoted by s), which simply says how many vehicles can pass the
stopline during a time unit. In the easiest case this capacity is chosen as a constant value (in most
cases 0.5 vehicle in each second). Unfortunately, exactly this computed number of vehicles from a
given link will flow out in a few cases. The traffic conditions and the driver behaviour affect the
outflow capacity. Thus, the outflow will change around the ideal value, and it follows from the
previous statements that not so many vehicles will leave the intersection, as it has been computed
previously. Actually, we can model the outflow with uncertainty, such as the sum of a nominal
outflow parameter, and a changing of the outflow: h;(k) = h*(k) + dh;(k). By this amount we can

obtain for the green time:

ul(k) — w (6.1)

Si
The above equation can be rephrased as,

i(k) = 6.2
wi(h) = == = (62)
The green time can be given as a sum of a nominal and an uncertain part, such as

ui(k) = ul (k) + Au; (k). (6.3)

Naturally, the control of the urban traffic is always a constrained control task. From [2, 3, 10]

it is deducible that the following constraints influence the green time:

1.
Umin S U; S Umaz, VZ (64)

n
Zui — TC — Ztig, (65)
=1

where ¢;, denotes the intergreen time.

If we consider the outflow with uncertainty, we can reformulate the above constraints into the
following form by using the formula: (6.3)

1.
Ui () + Ay, (R) S wi(k) < (F) + A, (F), (6.6)

Tmin tmax

zn: P (k) + Aug(k) = T. = 3ty (6.7)
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We have obtained uncertain constraints by this step, which cannot be used well in solving
control problems.

In case of the compartmental traffic system it can be an obvious solution to use a leaving
capacity similar to the SF approach. We can choose the green time of the i-th compartment

similarly to the SF model as,

hq(k) B Z%& Bui(k)zi(k)

s* s*

wi(k) = (6.8)

where s* denotes a leaving capacity. Constraints to the green time are required in the compartmen-
tal approach, as well. By an uncertain outflow we would obtain very similar uncertain constraints,
as by the SF model.

But do we need this leaving capacity? Let us consider another example by trying to detach
the outflow and the green time. Initially it is assumed that the number of outflowing vehicles is
measured at each stop line, and the order of the phases is fixed. The control algorithm computes
only the proportions 8 by keeping the constraints (4.2), and (4.3). Thus, it is computed how many
vehicles have to flow out from the different directions in the next cycle. The traffic controller does
not compute green times in advance. It only gives green signal, and counts how many vehicles
have already flowed out. When this amount equals to the previously appointed number, the traffic
sign turns into amber, and red, and follows the next phase.

By introducing fixed cycle time to the signal plan, the previous approach can cause serious
problems. Because of the uncertainties there can arise such cases, when the first n phases need
so much green time that the actual cycle reaches its end before all phases would take place. The
application of the fixed cycle time is not definitely reqgiured, but if the cycle time is subject to
change, the signal plan of the junction will be more unpredictable.

6.2 Uncertainties

As it was discussed in the previous section, the outflow through the stop line cannot be described by
an exact value. This information can be built into the compartmental approach by the introduction
of the nominal 8 and the uncertain .

Define 8};(k) as a nominal outflow rate. If each driver and vehicle would be the same, this
parameter would be applicable independently. Since, the participants in the traffic process have
different properties, another term, the changing (ApB;;(k)) is introduced. Thus, the entire 3;;(k)

is generated by the sum of the above two amounts as,
Bij (k) = Bi5 (k) + ABi; (k). (6.9)

Thus, we obtain for the matrix A the same structure, as by the case without uncertainty, but
the nonzero entries are subject to change as it can be seen in equation (6.10). Matrix .4 can be

dissociated into two parts: to a nominal and an uncertain part with state additive structure.

6.3 Ideas for control

Finding a controller to a nonlinear system is not a trivial case. Moreover, in traffic applications
parameters always appear, which have to be minimized or maximized during the control. A
typical choice can be the minimizing of the total time spent parameter (defined in [16], as well).

Linear quadratic (LQ) control, and the various types of the model predictive control (MPC) are
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able to handle minimization or maximiziation problems during the computation of control inputs.
However, each methodology can be acceptable, which can handle constraints.

Similarly to quite all physical processes, the traffic flow goes between constraints, which fact
has to be considered in the controller. For instance, the road network has capacity bound related
to the throughput. Most of the traffic lights cannot give a green signal with arbitrary length. The
MPC techniques can handle such restrictive conditions in the state resp. the control input.

The connection between the green time and the outflow of the links becomes very important
at this point. If the uncertainty of the outflows appears in the green times (for instance by the
terms g¢1(k) = g7 (k) + Agi(k)) this uncertainty will be adapted into the constraints, as it can be
seen in (6.6). The control task with uncertain constraints will not able to give optimal solution,
since the uncertain part can change from step to step. It can be estimated depending on historical

data, but this is not the fanciest solution.
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7 Summary and conclusion

We conclude the achieved results of the thesis project in the sequel.

In this thesis a novel approach for modeling urban traffic has been proposed. This new ap-
proach is the application of the well-known compartmental systems for modeling traffic flow in
urban environment. Compartmental systems always hold the mass-conservation law, moreover
they are always nonnegative. These two properties can be related to the traffic flow, as well. Mass-
conservation appears as vehicle-conservation. The positivity is obviously required, since negative
number of vehicles does not exists.

We have found an appropriate parameter - the leaving flow rate - to model the outflow of the
vehicles in the intersections, moreover it can be used for control input. The leaving flow rate
with its constraints ensures the fulfilment of the vehicle-conservation law, and the positivity. This
parameter has led to a bilinear system structure, where the control inputs are involved the system
matrix. The matrix representation of the compartmental traffic system always carries information
about the network topology, unlike the SF model, in which the system matrix is a simple unit
matrix.

The model analysis has provided information about the stability of the compartmental traffic
system. We found that the system can be described as a stable one with constant §-s. With
changing leaving flow rates only local stability can be appointed. Linear Lyapunov-function can
be chosen in case of the compartmental systems. The number of vehicles present in the network
can be considered as Lyapunov-function. Local controllability can be analised in this problem
formulation. We have been examined the possibility of the decoupling of the system, which can
be reduced to conditions to the control inputs. Sensitivity analysis of the compartmental traffic
network is possible by the condition numbers of the system matrix. This field can be further
examined in terms of the unicity of the solution of difference equation.

The conversion of the leaving flow rate to green time is not a trivial transformation, if we would
like to avoid the application of the leaving capacity notion of the SF model. The uncertainties of
the outflow can be built in the model by defining nominal and uncertain part of the system matrix.
Further analysis is required to provide a comprehensive model for control tasks. The design process
will be complete with an optimal control design.

The compartmental traffic model has an important advantage compared to the SF model. The
system matrix A gives informations about the network topology, unlike the identity matrix of the
SF model. Moreover, at the model analysis we can connect the statements of system theory to
parts of the physical process. This step is quite unpossible at the SF model.

As final summary we can state that the compartmental traffic model is appropriate for model

analysis. Control tasks depending on this model can be solved in a difficult way.
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