MUEGYETEM 1782

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING

DEPARTMENT OF CONTROL AND TRANSPORT AUTOMATION

B.Sc. THESIS

Traffic Parameter Estimation in
Urban Road Networks based on
Radio Signaling Data

Adéam Ludvig
CJFAC3

Supervisor: External Advisor:
Tamas Tettamanti Hunor Demeter

assistant lecturer senior research engineer
DCTA, BME Nokia Siemens Networks

Budapest, June 5, 2012



Contents

1 Introduction

2 Preliminaries

2.1 Background of Radio Signaling Technology . . . . . . . .. ... ...
2.1.1 GPS . ..
212 GSM . . ..
2.1.3 Bluetooth . . . . . .. ... ...
214 RFID . ...

2.2 Methods of data collection . . . . . . ... ... ... ...
2.2.1 Client side data collection . . . . . . ... ... ... . ....
2.2.2  Server side data collection . . . . . ... ... 0L
2.2.3 Third party data collection . . . . . .. .. .. ... ...

23 Privacy . . . . .o

2.4 Traffic Applications of Radio Signaling Data . . . . . . .. ... ...
2.4.1 Stateofthe Art . . . . . . . .. ... ... ... ... ... .
242 Goals of the Thesis . . . . . .. .. .. ... ... ... ...,

3 Travel Time Estimation

3.1 Input specification . . . . . . ... ... L
3.1.1 Location information . . . . .. ... .. ... .. ... ...
3.1.2 Datasource . . . . .. . . . ...

3.2 Kalman filter . . . . . . .. ...

3.3 Application of Kalman filter . . . . . . . .. ... ... ... .....
3.3.1 Underlying dynamic model . . . . . . . ... .. ... ... ..
3.3.2 Observation . . . . ... .. ... ...
3.3.3 Routecreation . . . .. .. ... ...
3.3.4 Intermediate uncertainty . . . . . .. ...
3.3.5 Incompletedata . . . . . .. ... ... .. ... ... .. ...

4 Validation

4.1 Matlab environment . . . . . ...



4.1.1 Framework . . . . . .. 26

4.1.2 Estimation. . . . . . .. ... L 31
4.1.3 Visualisation . . . ... ... ... ... ... ... ... 37
4.2 Simulation based on random process . . . . . . .. .. ... ... .. 37
4.2.1 State as random process . . . . . . ... ... 37
4.2.2 Random observation . . . . ... ... .. ... ... ... .. 39
4.3 Simulation by VISSIM . . . . . . . . ... ... .. ... ... 40
4.3.1 Model . . . . .. 40
4.3.2 Ewvaluationtools. . . . . . ... ... .. ... ... ... .. 42
4.4 Simulation result . . . . ... ... 44
4.4.1 Update frequency . . . . . . . . . . ... 44
4.4.2 Variance of assumptions . . . . . ... .. ... 45
4.4.3 Transient function to free flow estimation . . . . . . . . . . .. 50
444 Results. . . . . ... 51
Conclusion 54
5.1 Implementation . . . . . . . . ... 54
5.1.1 Probability theory . . . . . ... .. ... ... ... 54
5.1.2 Implementation difficulties . . . . . . . . . ... .. ... ... 54
5.1.3 Application in traffic control . . . . . . .. ... ... ... .. 55
5.2 Future works . . . . . ... 55
5.2.1 Fundamental diagram based traffic assumption . . . . . . . . . 55
5.2.2 Continuous time data update . . . .. ... .. .. ... ... 56
5.2.3 Incident detection . . . . . . . . .. ... 56
5.2.4 VISSIM based integrated simulation environment . . . . . . . 56
Source code of framework 57
Al alter.m . . . . . ... 57
A2 defaultEstimation.m . . . . . .. .. ... .. .. .. ........ 58
A.3 defaultIfNoData.m . . . . . . . . . . . . . . . i 58
A4 figurelayout.m . . . . . . . . . .. 60
ADb getEdges.m . . . . . ... 60
A6 interpolateCSV.m . . . . . . . . . . . . ... 61
A.7 interpolateMatrix.m . . . . . . . . . . ... ... 61
A.8 KalmanFilter.m . . . . . . . . . . . . . . .. . ... 62
A9 KalmanWithAssumptions.m . . . . . . . . .. .. ... ... ..... 62
A.10 keepDefaultRatio.m . . . . . . . . . . . . ... ... 63
Alllong.m . . . . . .. 64



Al2main.m . . . . . ..
Adl3negyzet.m . . . . . . . ..
AldnoiseUni.m . . . . . . . . . ..
A 15 plotInMatrix.m . . . . . . . ...
A.16 plotRealEstimation.m . . . . . . . . . . . . .. .. ...
A.17 randomMeasurement.m . . . . . . . . . ...
A.l8 randomRoute.m . . . . . . . .. ...
A19 readFromCsv.m . . . . . . . . . ...
A20 settings_random.m . . . . . ... ...
A 21 settings _vissim alter.m . . . . . . . . . . .. ... ... ...
A.22 settings _vissim long.m . . . . . . .. ... ...
A.23 setupGlobals.m . . . . . . ...
A.24 setupParameters.m . . . . . . . . ...

A25 states.m . . . ...

List of Figures
List of Tables

Bibliography

75

76

7



Abstract

There are many existing radio based technologies providing data to identify a trav-
eller at different places in an urban traffic network. One package of information
contains the position and the time stamp of one point of the traveller’s trajectory
and some data which is unique to the traveller. This document shows a way to esti-
mate real time traffic parameters, especially travel time, on large scale urban road
network from combined radio signal data streams of various technologies. The esti-
mation applies Kalman filter method. The applied software environment is Matlab
and validation took place on simulated traffic data from VISSIM.

Keywords: Location Based Services, Kalman filter, Urban network, GSM,
Travel time estimation, VISSIM



Acknowledgement

First and foremost I offer my sincerest gratitude to my supervisor, Tamas Tetta-
manti, who has supported me throughout my thesis with his patience and knowledge
whilst allowing me the room to work in my own way. I attribute the level of my Bach-
elors degree to his encouragement and effort. One simply could not wish for a better
or friendlier supervisor.

Hunor Demeter and Norbert Vékony, my fellow colleagues at Nokia Siemens
Networks, taught me several aspects of modern corporal research process as data-
mining techniques and agile software development. Hunor shared his great expe-
rience in telecommunication technologies and Norbert was always helpful when I
needed someone. Without them this thesis, too, would not have been completed or
written.

Janos Polgar, my fellow at the University, showed me lots of tricks in VISSIM
and helped me when I stuck somewhere deep in the complex simulations. He gave

objective critics and tips how my thesis could ameliorate by.



Chapter 1
Introduction

Nowadays intelligent transportation system (ITS) is a popular topic in traffic and
especially urban traffic management and control. An ITS is a transportation system
that makes use of information and communication technology to address and alle-
viate transportation and congestion problems. In general, an I'TS relies on location-
based information: It monitors and processes the location of a certain number of
vehicles (used as probes) to obtain information on estimated travel time, driving
conditions and traffic incidents. Using a relatively large amount of probes, the early
stages of bottlenecks can be detected, and traffic can be directed to other routes to
mitigate congestion and provide more expedient and efficient itineraries to travellers.
A variety of sensors can be used to obtain traffic information [5].

Immediate intervention could prevent congestions hereby decrease negative ex-
ternalities in urban traffic as fuel consumption, environmental pollution and increase
economical productivity. Qualitative and quantitative analyses of the external costs
which urban traffic congestion brings are the base of improving travel demand man-
agement and designing relative strategies, and even will help to maximize the effec-
tive usage of urban road resources [30].

These applications require reliable source of real time traffic data to measure or
estimate various intrinsic traffic parameters for efficient road traffic management in
this way reducing total cost of a town and enhance efficiency of economics.

I am a forgetful person, it is a serious problem for me to silence my cell phone
during classes. Years ago I was looking for a reliable solution to this problem when
I first met the possibility to gain location information from the cellular network. I
created small scripts and applications for my smart phone that were usable in some
university projects to simplify data collection.

Later I read the book Bursts [1] from Albert-Ldszl6 Barabasi and 1 got very

excited about using cellular network based location information.

6



I was working for a year for the Department of Control and Transport Automa-
tion on various interesting projects involving PLC automation and variable message
signs when Tamds, my supervisor at the department, mentioned that he is work-
ing on a research project on cellular network based traffic measurement for Nokia
Siemens Networks. At that time I was very impressed by the opportunities of the
method and persuaded Tamés to let me join.

In 2011 September I joined the team at Nokia Siemens Networks as a collab-
orative student to work on the theory of estimation as well as on the actual code
to develop the software. The goal of the team is to create a working commercial
grade software which brought on many challenges to resolve. One of these was the
task to aggregate the gathered individual information to a consistent, simple traffic
variable.

Tamas’ and my duty was to examine possible ways to aggregate these pieces
of information. I suggested the following method as a possible way but the team
decided not to utilize it because it needed more research and was not finished at the
time. Instead a basic method was chosen and implemented.

I decided to examine and finish the research work on my own on this matter

because it is superior in essence and it seemed an ideal subject for my thesis.



Chapter 2

Preliminaries

2.1 Background of Radio Signaling Technology

Many different technologies could be utilised to provide the required location infor-

mation stream for traffic parameter estimation.

2.1.1 GPS

A satellite navigation or SAT NAV system is a system of satellites that provide
autonomous geo-spatial positioning with global coverage. It allows small electronic
receivers to determine their location (longitude, latitude, and altitude) to within
a few metres using time signals transmitted along a line-of-sight by radio from
satellites. Receivers calculate the precise time as well as position, which can be used
as a reference for scientific experiments. A satellite navigation system with global
coverage may be termed a global navigation satellite system or GNSS [29].

The Global Positioning System is a satellite based navigation system maintained
by the government of United States that provides position and time information.
It is freely available by anyone at any place where there is an unobstructed line of

sight to at least four GPS satellites [25].

2.1.2 GSM

GSM (Global System for Mobile Communications, originally Groupe Spécial Mo-
bile), is a standard set developed by the European Telecommunications Standards
Institute to describe technologies for second generation digital cellular networks [26].

GSM is a cellular network, which means that cell phones connect to it by search-
ing for cells in the immediate vicinity. There are five different cell sizes in a GSM

network — macro, micro, pico, femto and umbrella cells. The coverage area of each

8



cell varies according to the implementation environment. Macro cells can be re-
garded as cells where the base station antenna is installed on a mast or a building
above average roof top level. Micro cells are cells whose antenna height is under
average roof top level; they are typically used in urban areas. Picocells are small
cells whose coverage diameter is a few dozen metres; they are mainly used indoors.
Femtocells are cells designed for use in residential or small business environments
and connect to the service provider’s network via a broadband internet connection.
Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in
coverage between those cells [26].

Cell horizontal radius varies depending on antenna height, antenna gain and
propagation conditions from a couple of hundred metres to several tens of kilometres
26].

The base station subsystem (BSS) is the section of a traditional cellular telephone
network which is responsible for handling traffic and signaling between a mobile
phone and the network switching subsystem. The BSS carries out transcoding of
speech channels, allocation of radio channels to mobile phones, paging, transmission
and reception over the air interface and many other tasks related to the radio network
26, 12].

Telephone calls are made and received through a mobile terminal that, in official
GSM terminology, is denoted as Mobile Station (MS). The terminal contains the
technical equipment and a Subscriber Identity Module (SIM), which is a small chip
card that stores subscriber-specific identifiers, addresses, as well as keys to authen-
tication and encryption. It is composed by the network operator and delivered to

each subscriber with a valid subscription [26, 12].

BSS SMSS F____
s w;ﬂ
i A
'! '_,'.' ': - - O e
I = gsc J MEE ',,*' GMEE ., Fiooed 1elephnn-g'j
Ms LIBT3 network (ISDN)
Thea
Access natwork Core network

Figure 2.1: GSM architecture [12]

The BSS is responsible for monitoring and controlling the air interface. It consists

of two different components, which are called Base Transceiver Station (BTS) and

9



Base Station Controller (BSC). BTS is the official GSM term for base station and
thus contains transmitter and receiver equipment as well as an antenna. Figure
2.1 displays the basic architecture of GSM network. An important design goal was
to keep the base stations as simple and as cheap as possible, and hence they are
equipped with only very limited capabilities for signal and protocol processing. The
bulk of the work, for example, allocation and release of channels at the air interface, is
done by the BSC. Also, the BSC is responsible for control and execution of handover,
a function which is needed to keep a circuit-switched connection if the subscriber
moves between base stations. Each BSC controls several base stations, which are

connected to the BSC via fixed lines or radio link systems [12].

Location area B

Location area & Location area C

Figure 2.2: Location areas [12]

The cells of the network are grouped into location areas as seen in Fig. 2.2. This
serves the purpose to roughly follow the position of each MS. If the MS crosses the
boundary of the location area a location update event is emitted by the MS and it
can be monitored by the operator.

Whilst the MS is in active mode, e.g. a call is in progress, each pass of a cell
boundary emits a handover event as the two BTS passes the MS.

Among other possibilities these two kinds of events carry accurate enough loca-

tion aware information to fund location based services [11].

2.1.3 Bluetooth

Bluetooth is a proprietary open wireless technology standard for exchanging data
over short distances (using short-wavelength radio transmissions in the ISM band
from 24002480 MHz) from fixed and mobile devices, creating personal area networks
(PANSs) with high levels of security. Created by telecommunication vendor Ericsson
in 1994, it was originally conceived as a wireless alternative to RS-232 data cables.

It can connect several devices, overcoming problems of synchronization [24].
10



Every device has a unique 48-bit address. However, these addresses are generally
not shown in inquiries. Instead, friendly Bluetooth names are used, which can be
set by the user. This name appears when another user scans for devices and in lists

of paired devices [24].

Directional
antennas

Backup
battery

36 ‘ Polycar-
Modemn bonate box

Blipnode L2 with
intermal antenna

On/off
switch

Power
supply

Locked with
SECUNty sciews

Mounting
brackets

Figure 2.3: BlipTrack™ Bluetooth Traffic sensor

Most phones have the Bluetooth name set to the manufacturer and model of
the phone by default. Most phones and laptops show only the Bluetooth names and
special programs are required to get additional information about remote devices.

A Media Access Control address (MAC address) is a unique identifier assigned
to network interfaces for communications on the physical network segment. MAC
addresses are used for numerous network technologies and most IEEE 802 network
technologies, including Ethernet. Logically, MAC addresses are used in the Media
Access Control protocol sub-layer of the OSI reference model.

The MAC address is publicly available if the device is turned on thus it is perfect
to record and pair events of users passing a nearby traffic sensor like the one in Fig.

2.3 manufactured by the company BlipTrack.

2.1.4 RFID

Radio-frequency identification is the use of a wireless non-contact system that uses
radio-frequency electromagnetic fields to transfer data from a tag attached to an
object, for the purposes of automatic identification and tracking. The tag contains
electronically stored information which can be read from up to several metres away.
Unlike a bar code, the tag does not need to be within line of sight of the reader and
may be embedded in the tracked object [28].

11



It is widely used as automatic vehicle identification method in many countries
for electronic toll collection.

To track and locate vehicles along fixed routes, a technology called Signpost
transmitters is employed. This is used on transit routes and rail lines where the
vehicles to be tracked are operated mostly on the same linear route. A transponder
or RFID chip along the vehicle route would be polled as the train or bus traverses its
route. As each transponder was passed, the moving vehicle would query and receive
an acknowledgement, or handshake, from the signpost transmitter. A transmitter
on the mobile would report passing the signpost to a system controller. This allows
supervision, a call center, or a dispatch center to monitor the progress of the vehicle
and assess whether or not the vehicle was on schedule. These systems are alternative
solutions inside tunnels or other conveyances where GPS signals are blocked by

terrain.

2.2 Methods of data collection

There are fundamentally three different ways to collect required real time informa-

tion stream about location of travellers.

2.2.1 Client side data collection

Client side data collection is based on the travellers. The traveller should have a
device to obtain location data and another device to send his piece of information

in real time to central traffic headquarters for processing.

traveller ( service operator

>y, private location information
~

Figure 2.4: Client side data collection

Location information could be gathered directly via a GPS receiver device or
indirectly from location relevant information and an appropriate database to resolve
the bit of information. For example the latter could be the Cell Id identification code
of local base station of a cellular network, an RFID based signpost system along the
road network or simply wireless local area network identifiers through wardriving.

Nowadays mobile internet access via cellular networks is the dominant way to
send gathered information to a central institute. This method charges the traveller

12



but based on the amount of information and present-day internet usage customs
these charges are negligible.

This method depends heavily on the number of travellers who participate. A
small portion of travellers provide enough information to estimate traffic within
customary tolerance level [20]. Mobile communication and cellular network is an-
other key to produce real time information but urban areas are usually well covered.
The GPS signals can be used well in rural and suburban territories and the inner
cities, where GPS signal could be lost, are densely covered by cellular networks and
wireless local networks.

The method provides accurate and quick information but needs to build an
excessive user base which can be a bottleneck for a startup project.

There are many traffic information providers collecting data this way for example
Google’s Maps service which gets information from navigating Android devices at
the time[3]. Another interesting and fast developing application is AntaresNav’s
EgérUt application which provides dynamic navigation for all major smart-phone

platforms restricted to Hungary for now[10].

2.2.2 Server side data collection

Server side data collection gains information from functioning, already built services
by persuasion of the service provider to supply practical data about its customers.

Mainly, mobile network operators could provide usable information for traffic
applications. The are location representative events happening in cellular networks
like Handover and Location Update. One more required piece of information is a
unique identifier of the user that can be used to group the mobility events by user.
The unique identifier reveals privacy issues causing one of the key difficulties in
the operator’s persuasion. This identifier can be hashed and encoded but should
be unique for a duration. Duration depends on the application, the technology and
the dominant length of travels, for urban networks one day of uniqueness seems

abundant.

Sy .
traveller -<C > service operator

private location information (

Figure 2.5: Server side data collection

This approach has the advantage of numerous data sources from the beginning

13



without the need of building infrastructure. The acquired location information is less
accurate then direct GPS information but still valuable. Accuracy of the location
data depends on many parameters[11]. The persuasion and the stiff dependence on
the mobile network operator are the main problems of this method.

Several operators are involved in such a research or product development around
the globe [1, 5]. The actual project I participated in at Nokia Siemens Networks

implements this approach, too.

2.2.3 Third party data collection

Third party data collection mechanism means to gain publicly accessible location
and traveller identity information without the knowledge and attendance of the
traveller.

Usually this approach requires to build infrastructure to reach such information.
But the bulk of users from the start of the project can rectify the initial build costs.

In many countries, these information are publicly available nevertheless, the
recording them and processing them bring up privacy issues [13].

One concrete method based on this approach that is in operation in many cities
and highways is to place video cameras around the main network nodes that parse
and record licence plates of vehicles. The data stream can be applied to real time

traffic control [14] or in most cases for average speed limit enforcement [16].

traveller << '/\' > service operator

publicly avaliable location relevant information

Figure 2.6: Third party data collection

Vysionics’ RouteHawk product uses Automatic Number Plate Recognition
(ANPR) for journey time measurement. This application plays elemental part in
traffic decision support systems of many cities worldwide[23].

Another implementation is Swarco’s Bluetooth based BLIDS. BLIDS receiver de-
tects Bluetooth enabled devices, which are within reception proximity of the antenna
for example handsets, laptops and hands-frees and records their unique Bluetooth
addresses (MAC). The addresses are converted into anonymous user identification

tokens and stored together with exact time stamps of the observations. It manages

14



the observations into a database which can be analysed to calculate traffic parame-
ters including travel time, origin-destination streams, traffic incidents [6].

Beyond Swarco another company utilising a similar Bluetooth based is BlipTrack.
Their system is available to collect information from highways as well as urban

networks including private and also public transportation [2].

2.3 Privacy

Location based services are applications utilising the information of subscribers’
position. Worldwide there are several countries, including the states of European
Union, where the local law enforces service providers to store and provide location
data in case of emergency. Such information has a wide range of commercial ap-
plication opportunities which funds a major new market for the telecommunication
and telematics industry [13].

Among the huge amount of available private user information in cyberspace the
location data differs in an intrinsic way bearing physical location of the subscriber.
Therefore in mature countries law regularize the availability and usage of sensitive
location information in varying clarity [13].

Since these services often may be implemented in a way that exposes sen-
sitive personal information, there are several privacy issues to consider. A key
question is: “Who should have access to what location information under which
circumstances?”[17].

The ideal situation would be if the individual subscriber were aware and equipped
with tools to directly control his own personal location privacy policies, subject to
applicable rules and regulations [17].

Unlike other location based services that provide personalisation traffic param-
eter estimation purpose does not claim personal identification other than a single
trip. In this way mathematics and cryptography offer a simple and efficient way to

solve privacy issues (see Fig. 2.7).
Periodically generated
random key
d Hash function *7/ Encrypted /
user id
/ Unique user id /Ll_)

Figure 2.7: User id encryption

Travellers identification data may vary for trip to trip. A period from a few hours
15



to a day is long enough to generate a new random encryption key depending on the
ordinary trip length in the urban road network. These keys are used to salt a hash
function applied on the travellers identification data. This undecipherable method

grants privacy of travellers.

2.4 Traffic Applications of Radio Signaling Data

2.4.1 State of the Art

There are several finished and ongoing research projects according to location based
services based on cellular networks. Two main directions are present affecting most
of the research process. One portion of the articles approaches the topic from an
academic viewpoint where the provided methods are more general but a real ap-
plication is far from realisation. The amount of data to work on is limited due to
privacy concerns. The other way of research projects is performed or funded by com-
panies from the telecommunication industry. These papers provide valuable real life

applications but no general concepts and the methods are protected by patents.

Origin-Destination Matrix

A straight application of various zone based location aware information in urban
environment is the origin-destination matrix. The accuracy of location determination
does not affect the estimation of origin-destination matrix and it is valuable at traffic
design, traffic control and also commercial applications.

The paper of Caceres, Wideburg and Benitez about estimation of origin-
destination matrix provides algorithms to proceed information from cellular net-
work. A GSM network simulator was developed to test and validate the method.
The article yields detailed examples only for highways [4].

Transport Research Laboratory of UK also analysed the possibility to gain origin-
destination matrix from server side billing information of Oy mobile operator in the
Kingdom. The method was not detailed and was not intended to provide the data

real time [8].

Route choice

The route choice of travellers is challenging in urban road traffic network. The route
of a vehicle is hidden between each update of location information. A fortunate

choice could enhance the quality as much as a blind guess could ruin the result.

16



The article of Yuan, Guan and Qiu offers ideas and algorithms for a wide range of
traffic applications and challenges. The goal of the paper was a complex application
to estimate various traffic parameters of the suburban of Beijing. GSM handover
and location update zones were formed to gain server side location information and
process it in multiple steps. GPS based field tests were carried out for testing and
validation [31].

Tettamanti, Demeter and Varga wrote a paper about route choice based also on
GSM handover and location update data. They applied Voronoi tessellation on map
of GSM base stations acquired from the crowd-sourced OpenCellID database. PTV
AG’s VISUM software and advanced route assignment algorithm were utilised to

estimate the most likely route of traveller between two districts of Budapest [19].

Travel Time Estimation

The paper of Ygnace, Drance Yim and Lacvivier from Berkley proves that cell phone
equipped drivers can be used as traffic probes for travel time estimates on a road
network. It depends on client side data collection and assumes that at least 5% of
travellers on the highway network of San Francisco are equipped with a GPS capable
cell phone. Based on the gathered information stream the travel time on the highway
link network could be predicted by 95% accuracy [15].

One interesting idea of the report offers to combine and mix different sources of
location information as for example GPS and cellular telephony network to improve
the estimation of travel time. It is not further detailed in the paper [15].

Similar research projects where carried out in Vienna and Rome with the support
of the mobile network operator, Telecom Italia. One paper identified the advantages
and the limitations of current third generation cellular technology in intelligent
transport applications|21], while the latter revealed a complex application integrat-

ing the consumer mobile terminals and on board units of professional drivers|5].

Vision

Prediction of human behaviour and movement is an old desire appearing in many
literary works. The classic book series of Isaac Asimov titled The Foundation in-
troduced the science of psycho-history. It states that above a predefined amount of
people the behaviour is accurately predictable for long periods.

These books gave the idea for several topics to research that could be utilised in
intelligent and effective traffic control.

Albert-Laszl6 Barabdsi is a famous research professor in the field of linked net-

works and human mobility patterns. He and his colleagues participated in numerous
17



articles and books to predicate movement patterns [7]. He used GPS based client
side data collection, huge amount of collected data from cellular network [18] and
also money tracking of WheresGeorge.com [1].

Governments and cellular network operator will be all affected and they will
participate in estimation of mobility of the mass to control it and improve the
efficiency of society. The question of privacy is still open but the attitude of young

generations is slowly altering and the fabulous work of Orwell passes into oblivion
(32].

2.4.2 Goals of the Thesis

This thesis has the following goals:

Large scale road networks A road network of complete city can be covered and
traffic parameters could be extracted continuously from any segment of the
network thus providing accurate and particular information on traffic of the

whole city.

Combined data of various sources Many technologically different but method-
ologically similar data sources could be utilised and merged to produce a reli-
able and accurate estimation of traffic parameters. Different cellular providers

are only the peak of the iceberg.

Reliable estimation Fault tolerance and stability are necessary for reliable and
smooth estimations of traffic parameters to control traffic flow on urban and

interurban road networks.

18



Chapter 3

Travel Time Estimation

3.1 Input specification

3.1.1 Location information

The above mentioned technologies have a common property, they provide location
aware information from certain, a priori known sections of the road network. These
sections are called zones and they have a bounded measurement error depending on
the applied technology. The zones could be identified by some universal or technology
dependent zone identifier named “zone id”.

The zones are constantly monitored and when a traveller passes a zone the
traveller’s identifier (uid), the identifier of the zone (zone id) and the time stamp of

the pass get handed to the traffic application.

“wid” - 7380561234567
"zoneid” 1741 (3.1)
"timestamp” . 1095379200

3.1.2 Data source

A data source provides real time information about subscribers consisting of a zone
id, a unique subscriber identification value called “uid” and the time stamp when
the subscriber passed the zone.

These data can be grouped by the uid and provide valuable travel information

for each individual subscriber.

19



3.2 Kalman filter

The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm
which uses a series of measurements observed over time, containing noise (random
variations) and other inaccuracies, and produces estimates of unknown variables that
tend to be more precise than those that would be based on a single measurement
alone. More formally, the Kalman filter operates recursively on streams of noisy input
data to produce a statistically optimal estimate of the underlying system state. The
filter is named for Rudolf (Rudy) E. Kalmén, one of the primary developers of its
theory [27].

The Kalman filter has numerous applications in technology. A common appli-
cation is for guidance, navigation and control of vehicles, particularly aircraft and

spacecraft.

Prior knowledge Pj_1jk-1 . ';r::::'g: thp

of state ~>
Xk—1|k—1 physical model

. } {

Next timestep li)klk—l
k< k+1 Xk|k—1
Pk|k: Update step Measurements
Xk|k: -<— Compare prediction -=— Vi
to measurements -

/

Output estimate
L ] of state

Figure 3.1: Basic concept of Kalman filtering

The algorithm works in a two-step process: in the prediction step, the Kalman
filter produces estimates of the current state variables, along with their uncertainties.
Once the outcome of the next measurement (necessarily corrupted with some amount
of error, including random noise) is observed, these estimates are updated using a
weighted average, with more weight being given to estimates with higher certainty.
Because of the algorithm’s recursive nature, it can run in real time using only the
present input measurements and the previously calculated state; no additional past
information is required.

From a theoretical standpoint, the main assumption of the Kalman filter is that
the underlying system is a linear dynamical system and that all error terms and

measurements have a Gaussian distribution (often a multivariate Gaussian distri-

20



bution). Extensions and generalizations to the method have also been developed,
such as the Extended Kalman Filter and the Unscented Kalman filter which work
on nonlinear systems. The underlying model is a Bayesian model similar to a hidden
Markov model but where the state space of the latent variables is continuous and

where all latent and observed variables have Gaussian distributions.

3.3 Application of Kalman filter

The Kalman filters are based on linear dynamic systems discretized in the time
domain. They are modelled on a Markov chain built on linear operators perturbed
by Gaussian noise. The state of the system is represented as a vector of real numbers.
At each discrete time increment, a linear operator is applied to the state to generate
the new state, with some noise mixed in it and optionally some information from
the controls on the system if they are known. Then, another linear operator mixed

with more noise generates the observed outputs from the true (“hidden”) state [27].

3.3.1 Underlying dynamic model

The general formula for the linear dynamic system assumed by the Kalman filter

kth state

can be described by the 3.2 formula. The Kalman filter assumes that the
of the system, denoted by xy, evolves from the (k — l)th state by multiplication
of the possibly time dependent state transition matrix A; and additional effect of

control input wuy.

Ty = Ap -2y + By -y, (3.2)

At the presented application the Kalman filter is used only for state estimation
thus there is no control input at all therefore the term By, - u; is abandoned.

My approach is quite straightforward way to represent a road network as a di-
rected graph. The nodes of the graph are the junctions and the zones where location
information could come from. The edges of the graph represent road connections
between the nodes. The edges are weighted and the weight represents the travel
time on the corresponding section of the network.

The states of the dynamic system are the time varying weights of the edges. In

th kth

Eq. 3.3 tt; ; names " edges travel time at discrete time step.

tty

[
o
I
—~
o
w
~—

ttn i
21



A simple scheme was chosen for the dynamics of the system underlying the
Kalman filter. Let the state-transition matrix, named Ay, be the constant identity
matrix representing the idea that the travel times do not evolve through time by

themselves.

3.3.2 Observation

At each time step the state of the dynamic system is updated by measurement.
Equation 3.4 shows the general formula stating that a measurement, y,, consists
of the linear combinations of the system states. Cp names the observation matrix

which varies over time representing the actual observations and assumptions.

Yy, = Cr - xp, + vy (3.4)

The observation matrix differs for each update according to the current incoming
observations from the various traffic data streams.

When trip information arrives it contains pairs of a location and a time stamp.
The route of the subscriber is determined from the time ascending location data in
some way. Then an appropriate observation vector could be constructed for each
ascending pair of time stamp values by ones at the states representing the affected
sections of the network and zeros for all other states.

These observation vectors can be arranged in an observation matrix.

The time differences between the time stamps are the values of the observations.

These observations contain v;, error which is bounded and can be assessed de-
pending on the applied technology. Theory of Kalman filter assumes that error is
white noise. The distribution of measurement in a handover zone is topic of an on-
going research process at the university. The preliminary results are suggesting that
presuming white noise as the error of zones is justifiable [11].

If the data are rare or frequent update of the system states is preferred, one has to
face the problem of a not observable system. For this reason I take few assumptions

that help the estimation to gain stability.

3.3.3 Route creation

A key point of the estimation is that the incoming traffic information contains only
places at specified date and does not indicate the actual route of the subscriber.
There is an ongoing research in the topic of dynamic traffic assignment at the de-

partment [19].

22



{Zl,tl} {Z27t2}

Figure 3.2: Route choice between two points of an observation

In this thesis I assumed that the zones where we can gain location data are so
frequent to the junctions of the network that any other solution beside the shortest
path on the graph is implausible. That way between two points the shortest path is

chosen as the route of subscriber.

3.3.4 Intermediate uncertainty

tt1 + tto

Figure 3.3: Three segmented road with two over-covering observations

For different data sources of various technologies, like GSM operators and number
plate recognition systems, the roads between junctions are divided to sections for
each zone. One subscriber does not provide exact travel times for each segment
covered by observation but the sum of these.

The rare observations and the over-segmented road network leads to insufficient
amount of information thus the system is unobservable and cannot be estimated by
Kalman filter.

An assumption was chosen that states that each pair following segments’ travel
time rate sustain their free flow travel time rate. In the following equation tt;

denotes the ith

h

segment’s free flow travel time and #f,.,; the real travel time on the

segment.

it 7 ttrea 7
ffv _ l: (3 . 5)
tprg  tlrear
23



Equation 3.5 can be rearranged to a valid row of the observation matrix.

ttffvj “Ttreal )i ttffz : real,] (36)

;th ]th Teal 1
’ ) 3.7

real n
Cij-x= (3.8)

Where Qi’j denotes a row of the C observation matrix and z is the state vector
of the system.

[ add this assumption to the observation matrix for each update with a reasonable
huge error variance.

The big error serves the purpose that the valuable observations are not affected
by this assumption, but the system became observable and stable assuming homo-

geneous traffic alteration on the following segments of road network.

3.3.5 Incomplete data

Dominant traffic

Rare traffic
Rare traffic

Figure 3.4: Rare traffic offers insufficient amount of observations

There is an open question of rare traffic and thus the insufficient number of
observation on parts of the road network. The lack of observations could be just for
a short period cause of coincidence or for longer period due to rare traffic. In the
previous case the traffic on affected distance is likely not to change much in essence.
The latter case is handled, according to fundamental diagram shown in Fig. 3.5, as
the traffic is weak therefore the speeds and travel times of cars passing is about free
flow.

A feasible assumption could be that if there is weak or no traffic on a road the
travel time of the link is its default free flow travel time as the fundamental diagram

of traffic flow suggests.
24



V [km/h]

e S
‘h"f \H‘\\ free flow
bound flow
i
D D [cars’km]
max

traffic density
Figure 3.5: Fundamental diagram of traffic flow

For the first case keeping of previous values is needed. For the second case the
constant free flow values should be set. Covering both cases power function was

chosen to keep approximately to 1 and later transit to 0. The function is displayed

in Fig. 3.6 for multiple exponents.

1 , <0
exponent
f(ﬂf) - 1-— <ttm:sient> ) 0 <z S ttransient (39)
0 5 ttransient <z

dap =1
map=d H
apeE 3
hp e d
aap = B

05|

bra resit
o . Timee elapsed fieem last cidervation

Figure 3.6: Transient function to free flow travel time value

This approach leads to the point where a few rare exclusions of the section from
the observation does not imply the state to fall far from the previous values but for

weak traffic the estimated value keeps to the free flow value.

25



Chapter 4

Validation

4.1 Matlab environment

Matlab, stands for matrix laboratory, is a numerical computing environment and a
special purpose programming language developed by MathWorks from 1984. Mat-
lab allows matrix manipulations, plotting, implementing user defined functions and
much more. Matlab has a complex, built in object oriented type system. A soft-
ware for Matlab can be written as a standalone application or can be run from an
interactive command line.

GNU Octave is a high level numerical computing oriented interactive command
line environment or interpreter. Octave code resembles Matlab code, because Oc-
tave is developed to be code compatible with Matlab. Octave has limited support
for object oriented development compared to Matlab. Octave is OSI approved free
software released under General Public Licence (GPL), which guarantees that the
source code of Octave remains available and modifiable for every user of it.

My intention was to create the demonstration code in a way that does not strictly
require the commercial Matlab software but is runnable on both Matlab and Octave.
Because of Octave’s limited support to object oriented discipline I wrote the demon-

stration code according the rather old fashion procedural programming paradigm.

4.1.1 Framework

At first there was a proof of concept code to show that the idea is feasible and has
worth it and feasible to give it a try. Later a framework was developed to test flexibly
various exchangeable modules for each function and feature.

Due to Octave’s limited support for object oriented development the written
software framework follows the imperative programming paradigm mixed with func-

tional elements. The essential and common values are stored in global variables, the
26



more specific variables are passed as function arguments and return values.
The framework, displayed in Fig. 4.1, has several global variables and com-

mutable functions described in the following subsections.

Estimated
Parameters

travel times

Running moal
me travel times
Configuration »| Setup global > Main

Figure 4.1: Rough flowchart of estimation test framework written for Matlab

The starting file of the framework is main.m. It is a Matlab function, call it as
main(300) from the Matlab command line where the parameter is the duration of

estimation.

Road network representation

The road network is represented as a directed graph. The vertices of the graph are
the zones and the junctions of roads, the edges between vertices indicates directed

straight road connection between two vertices.

Y

©

A

Figure 4.2: Sample road network

The graph is represented as its adjacency matrix where the weights of edges are
the free flow travel times on the edges. Free flow travel time can be obtained by
calculation or measurement. For the validation it was calculated from the length
and speed limit of the segment.

Figure 4.2 shows a sample directed graph with the following adjacency matrix

27



with unit weights for simplicity:

b

I
o o O = O
[ B S = B
_ o O = O
o ©O O = O
o O = O O

The framework has the glGraph global variable to hold the adjacency matrix.
The travel times on the edges are represented as a vector. The edges are numbered
depending on their position in the adjacency matrix. These numbers are used to
retrieve the value from the vector for each edge. glDefaultEdgeWeights is a global
vector having the initial free flow travel time values of the edges of the graph similar
way as the vectors holding estimated and actual travel times on edges.

For shortest path calculation the Dijkstra algorithm was used coded by Michael
G. Kay[9]. The function runs on the whole graph and its output is cached in the
global variable glShortestPathNeighbours. The function needed a slight modifi-
cation to become usable by Octave, the logical expressions were changed to lazy

evaluation.

Estimation update loop

The main loop of the framework starts with initializing the loop variable, the elapsed
time. The initial value of estimated travel time vector is the free flow travel time
vector.

Figure 4.3 shows the detailed flowchart of the main loop. The process flows top
down. Used variables are on the left of each function block and produced values on
the right. The dashed arrows show data flow.

There are three function calls in the main loop, each configurable. These are
nextState for the actual travel time, getMeasurement to get the observations, the
observation matrix and the errors of the observations and getEstimation to do the

estimation based on the observations.

Configuration

The main function of the framework calls a script first to set up the global variables,
create graph and set the above mentioned three functions. Matlab’s lambda function
was used to replace functions in the framework. The syntax of the lambda function

is described in Listing 4.1.

28



1

1

freeflow [ Store first | __ [ estimated
travel times estimation travel times
Y
variable
Y
travel times travel times
Y
reql === Get. ~——>/observation
travel times, observations
\4 :
estimated Store previous previous
. —-———- . . == estimated
travel times estimation .
travel timeg
AN \ 4
\\__) ] ]
. Get estimated estimated
observations-————>> . - i
~—>| travel times travel times
//
//
previous
estimated

travel times

Figure 4.3: Detailed flowchart of the framework’s main loop

Listing 4.1: Two argument lambda function in Matlab for multiplication
f = o(x,y) x*y;

Listing 4.2 shows the used settings script for an alternating route road net-
work. The first row of the script calls a function to get the graph representing the
road network. Then the global variables are set up. After that a global variable,
glSimulationStep, is used to parametrize the functions for the framework.

The nextState and getMeasurement function variables are filled with corre-
sponding csv reader functions, the former one with interpolation capabilities because

the estimation loop is more frequent than the registered values in the csv file.

Listing 4.2: Settings script for alternative routes
Graph=alter ();
29



setupGlobals (Graph);

global glSimulationStep;

nextState = Q@(state,time)

interpolateCSV(’real.csv’,’;’,time ,20,...
[4 6812367 8]);
getMeasurement = Q(graph, state, time)

readFromCsv(’vissim alter observation.csv’,...
>,7 ,time ,glSimulationStep);
getEstimation = @(graph,prevEstim,default,...
obsMx ,observation,qualities,time)
KalmanWithAssumptions (graph,prevEstim, ...

default ,obsMx ,observation,qualities);

Parameters

There are a few parameters to tune the estimation. They are set in file
setupParameters.m as global variables.

glSimulationStep is the parameter for frequency of the update loop. This is a
time duration in seconds representing the interval between updates.

glVarianceOfRatioEstimation parameter sets the relative weight of artificial
observations created by ratio keeping assumption compared to the real measure-
ments.

glVarianceOfNoDataEstimation parameter represents the relative weight of
free flow travel time assumption for weak traffic case in the Kalman filter.

glExponent0fSpeedToFreeFlowEstimation is a parameter setting the shape of
transient function in free flow travel time assumption. For value 1 the function is
piecewise linear.

glTimeToFreeFlowIfNoData represent the transient duration in seconds for free
flow travel time assumption.

glRandomMeasurementNumberOfMeasurementsInEachTurn is a parameter for
random observation generation, it shows that how many observations should be
generated for each update.

glRandomMeasurementDecreaseNum and glRandomMeasurementIncreaseNum
are parameters for the random travel time state process. They give the interval

around actual state where the new state is chosen from.

30



1

Global variables

There are several global variables that each module can reach. They contain common
data that are used frequently in many modules and functions or parameters tuning
the working of the framework or just cache some data that is tiresome to reload on
each function call like csv files.

glGraph stores the graph that the framework is working on.

glShortestPathNeighbours is a cached data for generating shortest paths on
the graph. It is the result of the function dijkstra(glGraph, [1, [1) that computes
shortest paths between each pair of vertices.

glNumberOfVertices and glNumberOfEdges store data about the graph. They
are used for loops and boundary checks.

glEdges is a helper matrix resembling the adjacency matrix but contains the
ordinal number of each graph instead of the edge weights.

glDefaultEdgeWeights stores the initial, free flow travel times for each edge
read from the adjacency matrix.

glTime is the actual time in the simulation.

glTimeOfLastData stores the time ticks for each edge when it was updated from

data based on real observations last time.

4.1.2 Estimation
Kalman filter

Matlab has the Kalman filter based linear quadratic estimator included. The refer-
ence of the function is in Listing 4.3. The function calculates the state estimation
for the dynamic system described in Eq. 4.1 and 4.2. The matrices sigw and sigv
denote the covariance matrices of noise vectors w and v. In this case sigv stores the
variances of observations and assumptions in a diagonal matrix. The result is the

gain matrix L that can be used for estimation as described in Eq. 4.3.

Listing 4.3: dlge function in Matlab

function [L, m, p, e]l] = dlqe (A, G, C, sigw, sigv)

xk+1:A-xk+B~uk+g-wk (41)
Y =C-xp+D-up + v (42)
ke = k-1 T L (yk —C zp1—D- Uk) (4.3)

31



1

1

A simple wrapper script, shown in Listing 4.1.2, was written around dlge to do

the latter calculation and give back only the estimated state vector.

function estimation = KalmanFilter (...

end

graph ,prevEstim,default ,obsMx,observation,qualities)

I = eye(length(prevEstim));
[Lk ,m,P,e] = dlqe(I,I,obsMx,I,diag(qualities));
estimation = prevEstim + Lk*(observation-obsMx*prevEstim);

The identity matrix I was used as state transition matrix .4, noise matrix G and

noise covariance matrix sigw.

Octave does not include dlge function in default installation. The “control”

package from Octave-Forge includes the dlge function among other control theory

oriented functions.

Kalman filter with assumptions

The observation matrix denoted by C in Eq. 4.2 varies for each update. Thus it is a

common situation the dynamic system is unobservable, the states of the system are

not well defined based on the actual observations.

Listing 4.4: Kalman filter with assumptions function code

function estimation = KalmanWithAssumptions (graph,

end

prevEstim ,default ,mesMx ,measurement ,mesQ)
[corMx, correction, corQ] =

getCorrections (graph,default ,mesMx ,prevEstim);

ObsMatrix = vertcat(mesMx, corMx);

Observation = vertcat(measurement, correction);
Qualities = vertcat(mesQ,corQ);

estimation = KalmanFilter (graph,prevEstim,

default ,0bsMatrix ,Observation,Qualities);

The function in Listing 4.4 gets the following input parameters: the graph ad-

jacency matrix, the previously estimated states, the free flow travel times, the ob-

32



1

2

3

servation matrix and corresponding travel times and their variances. The output of
the function is the estimated state of the system at the time.

At first the assumptions are calculated based on the graph, the free flow values,
previous estimation and actual observations by the function getCorrections. It is
detailed in Listing 4.5 The result is concatenated to the actual observations and the

basic Kalman filter wrapper function is called.

Listing 4.5: Source of getCorrections function

function [corMx, correction, corQ] = getCorrections(...

graph, default, mesMx, prevEstim)

[ffMx, ff, ffQ] = defaultIfNoDatad(...
graph ,default ,mesMx ,prevEstim) ;
[ratMx ,Z,ratQ] = keepDefaultRatio(graph);

corMx = vertcat(ffMx, ratMx);
correction = vertcat (ff,Z);

corQ = vertcat (ffQ,ratQ);

end

The results of the two assumptions of free flow rate and no data free flow are

concatenated and returned to the caller function.

Free flow in case of scarce data

For the case of rare traffic and scarce observations a transient function was defined to
continuously move the estimated travel times of the affected road segments towards
their free flow travel times.

After starting with the initialization of a bunch of global variables the function
checks if there are any observations. If not it returns with the free flow values for
each segment. Otherwise it sums the observation matrix by segments and checks
in a loop for each segment that whether it is included in any observations. If so
it updates the corresponding element of the vector glTimeOfLastData otherwise

calculates a transient value based on the transient function defined in Section 3.3.5.

Listing 4.6: Function to transit estimated travel time to free flow value

function [corMx, correction, corQ] =

defaultIfNoData (graph,default ,mesMx,prevEstim)

33



global glVarianceOfNoDataEstimation;

global glExponentOfSpeedToFreeFlowEstimation;
global glNumberOfEdges;

global glTimeToFreeFlowIfNoData;

global glTimeOfLastData;

31

32

33

34

35

36

38

39

40

global
global

len =

d = glTimeToFreeFlowIfNoData;

exponent = glExponent0OfSpeedToFreeFlowEstimation;

Quality = glVarianceOfNoDataEstimation;

if

els

glTime;

glSimulationStep;
glNumberOfEdges;

isempty (mesMx)
[corMx, correction,

defaultEstimation (graph,default,Quality);

e
corMx = [];

num=0;

correction=[];
for k = [1:1len;sum(mesMx,1)]

if k(2)==

line

corMx=[corMx;line];

t = glTime-glTimeOfLastData(k(1));
pt = - glSimulationStep;
if t < d
(1-(t/d) " exponent);
transPrev (1-(pt/d) “exponent);
correction=[correction;
(prevEstim(k (1)) default (k(1)))
/transPrev * trans + default(k(1))];
else
correction=[correction; default(k(1))];
end
num num + 1;

[zeros(1,k(1)-1) 1 zeros(l,len-k(1))];



41

43

44

45

46

47

else
glTimeOfLastData(k(1)) = glTime;
end
end
corQ = Quality*ones(num,1);
end

end

The transient function is calculated in 32"4-36'" lines of Listing 4.6. Variable d
denotes ti qnsient in the code. The formula is explained by Eq. 4.4 and Fig. 4.4 where
exponent and tiansient are parameters, eyrrent aNd tprepious denote the time stamp
of the current and previous update cycle, t;,,; denotes the time stamp of last valid
observation for the corresponding segment, Z,,c ious Stores the value of previous
estimation of travel time and 77 t,cc 10w is the default free flow travel time value for
the segment. trans and transPrev are the transient function values at the current
and previous time stamps.

1 _ <tcur'rent7tlast >exponent

>eavponent : (Zprevious - TTf'reeflow) + TTf'reeflow (44)

tiransient

tprevious*tlast

Zcurrent - 1 (

tiransient

A
Q Z previous
£ 7\
- Zcurrent
o
>
©
—
—
8 T-I;reeflow
2 pt
©
£
7 t
()

transient -
O tlast tprevious tcurrent t|me

Figure 4.4: Current and previous estimation on transient function

Keep free flow ratio

The function keepDefaultRatio processes a graph adjacency matrix, lists all com-
binations of following directed edges and generates an observation matrix of them

to keep their free flow travel time rate.

35



The function, listed in Listing 4.7, started with reading global variables about the
graph. Then the simple inline function genLine was defined as a lambda function
to generate a row of observation matrix from two edges according to Eq. 3.7.

The following edges of the graph was determined by a simple algorithm listing all
three combinations of vertices in the graph and checking if they are neighbours. If so
the function genLine generates a row appended to the observation matrix. Finally
the constant tags are set to zero and the variance vector to a predefined constant

value.

Listing 4.7: Function to give free flow rates of following segments as observations

function [corMx, correction, corQ] = keepDefaultRatio (graph)
global glEdges;

global glNumberOfVertices;

global glNumberOfEdges;

global glVarianceOfRatioEstimation;

genLine=@(A,B,A w,B_w)
[zeros(1,A-1) B w zeros(1,B-A-1)
- A w zeros(1,glNumber0OfEdges-B)];

corMx=1[];
for vertex=1:glNumberOfVertices
for from=1:glNumberOfVertices
from_edge w = graph(from,vertex);
if (from_edge_w~=0)
for to=1:glNumberOfVertices
to_edge _w=graph(vertex,to);
if (to_edge _w~=0)

from_edge = glEdges(from,vertex);
to_edge = glEdges(vertex,to);

line = [];
if from_edge < to_edge
line = genLine(from_edge,
to_edge ,from_edge_w,to_edge_w);
elseif to_edge < from_edge

line = genLine(to_edge,

36



38

39

40

41

43

from_edge ,to_edge w,from_edge w);

end
corMx = [corMx; linel];
end
end
end
end
end
correction = zeros(size(corMx,1) ,1);
corQ = ones(size(corMx,1),1)

* glVarianceOfRatioEstimation;

end

4.1.3 Visualisation

Three functions were written to handle plotting easily and efficiently.

The function plotRealEstimation takes the real and estimated travel time ma-
trices returned by the framework and a number representing one section and plots
that one segment’s real and estimated states over time.

The function plotInMatrix takes the real and estimated state matrices and a
subfigure layout matrix representing where and which segment to plot on a com-
plex plot window. The sub plot layout matrix can be easily generated by function

figureLayout . The function plotInMatrix results a plot like Fig. 4.5.

4.2 Simulation based on random process

For testing of the idea and various parts of the framework at first a random state

transient and measurement model were set up.

4.2.1 State as random process

A simple solution to simulate a random process is a Markov process. The imple-
mentation is simple the next state depends only on the current one. The simulation

takes the upper and lower bound around the current state between the next state

37



Travel time (s)

6 . . . . . 10 . . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

50

0 . . . . . 0 . . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Simulation time (s)

Real
Estimation

Figure 4.5: Output of plotInMatrix function

is chosen by uniform distribution. It is a continuous state discrete time Markov

process, a random walk formulated in Eq. 4.5.

Xi+1 ~ UNI (X) 4+ Lower Bound, X, + Upper Bound) (4.5)

This approach is simple to implement but does not follow real traffic variation.
As can be seen in Fig. 4.6 the fluctuations of travel times is not realistic but may

be suitable for testing purposes.

28

26

24

22

20

18 \ 3 Real
Estimation

50 100 150 200 250 300

Figure 4.6: Random process as travel time of a segment plotted over time

The built in function rand was used and wrapped in noiseUni function to fit in

the framework.
38



1

4.2.2 Random observation

The observations could be generated randomly from the known state of the road
network. The function randomMeasurement was created for the purpose as a part of
the framework. It takes the graph and the current travel times as input arguments
and the number of observations to generate as parameters. It can add some noise to
the generated observations.

The function calls multiple times the function randomRoute to get a random

route on the graph. The source of randomRoute is contained in Listing 4.8.

Listing 4.8: Random route generation in graph

function obsVector = randomRoute (graph)
global glShortestPathNeighbours;

global glNumberOfVertices;

global glEdges;

global glNumberOfEdges;

len = glNumberOfVertices;

a = randi(len);
b = randi(len);
while a==

b=randi (len);

end
start = min(a,b);
finish = max(a,b);

obsVector = zeros(l,glNumberOfEdges);

nextVert finish;

prevVert glShortestPathNeighbours (start ,finish);
while prevVert~=0

obsVector (glEdges (prevVert ,nextVert))=1;

nextVert = prevVert;

prevVert glShortestPathNeighbours (start ,nextVert);
end

end

39



Function randomRoute chooses two random vertices uniformly distributed from
the graph and tries to create the shortest path between the pair of vertices utilis-
ing the previously calculated matrix by Dijkstra algorithm. If the route cannot be

calculated a new pair of vertices are chosen and so on.

4.3 Simulation by VISSIM

VISSIM is a leading microscopic simulation program for multi-modal traffic flow
modelling developed by the German PTV AG. With its unique high level of detail
it accurately simulates both urban and highway traffic, including cyclists and mo-
torized vehicles. It can simulate varying traffic on road networks. Figure 4.7 shows
the typical user interface of VISSIM.

Eile Edit Miew Base ic  Signal Control Evaluation Simulation Presentation JTest Scripts Help

BARRE. R BRA A 90 ippME.
b\

T EZ%oH

<«

b
-
ol

=@ PO

=]
=

H B &

18+0 134 (618)

Figure 4.7: VISSIM graphical user interface

4.3.1 Model

The road network shown in Fig. 4.8 was modelled in VISSIM. At the red marks time
dependent speed limits are used as traffic disturbance to simulate an accident caused

congestion. The connectors between links marked blue in Fig. 4.8 function as zones

40



Figure 4.8: Simulated road network

in the simulation. Their size vary between 5 and 20 meters. Table 4.1 summarises

the length, speed limit and free flow travel time for each link.

Table 4.1: Segment properties of the road network

id | length | speed limit | free flow travel time
m km/h s
1 170 50 12.24
2 108 50 7.78
3 110 50 7.92
4 | 407 50 25.70
5| 407 50 25.70
6 | 266 50 19.15
7| 265 50 19.08
8 69 50 4.95

The simulation has a 300 seconds duration and is stepped by 0.1 seconds. The
speed limit is set to 50km/h on the whole network but at the marks for a short
period. On the upper segment, the left one according to heading, the section marked
red has a 12km/h speed limit restriction from the 30" to 120" seconds of the
simulation. The lower segment, the right one, has a similar speed limit restriction

starting at the 60" and lifted at the 150" seconds as displayed in Table 4.2.

Table 4.2: Temporal speed limits on links

link | start | end | speed limit
s s km/h

30 | 120 12

60 | 150 12

41



3

5

4.3.2 FEvaluation tools

VISSIM provides wide range of tools to evaluate the simulation, supports pro-
grammable COM interface to access the most details or allows extension via ap-
plication programming interface.

Two built in standard tools were used to gain raw data from simulation.

Travel times

“Each section consists of a start and a destination cross section. The average travel
time (including waiting or dwell times) is determined as the time required by a
vehicle between crossing the first (start) and crossing the second (destination) cross
sections.”[22]

“During a simulation run, VISSIM can evaluate average travel times (smoothed)
if travel time measurement sections have been defined in the network. Via EVALU-
ATION — WINDOWS, the travel time records can be displayed in a window on the
desktop. They can also be stored as an output file if option Travel time is ticked via
EVALUATION - FILES.” [22]

One travel time measurement section is placed along each link in the road network

and the measurement result is saved to file with extension “rsz”.

Listing 4.9: Sample file of travel times|22]
Table of Travel Times

File: C:\VISSIM520\ Examples\Demo\LRT—Priority .LU\lux3_10.inp
Comment: Luxembourg, SC 3-—10

Date: Wednesday, May 13, 2009 12:26:34 PM

VISSIM: 5.20—00 [18711M]

No. 1: from link 1 at 0.6 m to link 9 at 19.0 m, Distance 18.4 m
No. 2: from link 2 at 298.4 m to link 3 at 33.8 m, Distance 106.8 m

Time; Trav;#Veh; Trav;#Veh;
VehC; All ;; All ;;

No.:; 1:1; 2:2;

60; 132.6; 49; 142.0; 219;
120; 134.6; 61; 140.4; 249;

Travel time measurement tool was developed to measure longer periods of sim-
ulation. VISSIM averages the travel times of travellers passed the link in the actual
time period thus the actual travel time cannot be updated too often. Five seconds

update frequency was chosen to update the values and intermediate values are cal-

42



culated by linear interpolation.

Frequent update is required to compare the measured values to the estimated
travel times. One goal of the estimation application is quick, on-line evaluation of
radio signaling data to aid real-time traffic control.

The resulting “;” delimited file can be processed by Matlab’s dlmread function.
The wrapper Matlab function is named interpolateCSV.m to handle travel time

measurement as real values to compare estimation to.

Vehicle record

VISSIM offers Vehicle record tool to save the desired properties of vehicles to file.
The required information is the vehicle’s identification number, the time stamp of
the simulation, the link which the vehicle is located on and the position of the vehicle

on the link. The measurement results in a file with extension “fzp”.

Listing 4.10: Sample file of vehicle record
Vehicle Record

File: c:\vissim_nets\ludvig\l_d.inp
Comment :
Date: Friday, May 11, 2012 2:03:27 PM

VISSIM:  5.40—03 [33277]

VehNr : Number of the Vehicle

t : Simulation Time [s]
Link : Number of the Active Link
X : Link Coordinate [m] at the end of the simulation step
VehNr; t; Link; X;
1; 3.1; 3; 1.1;
L; .25 3; ;
1; 3.3; 3; 4.0;

The file was slightly modified and imported to an SQLite database. After some
filtering, observations were formed from pairs of following location information about
each vehicle. The observation table has among others “link”, “time stamp” and
“travel time” fields. The table was exported to a csv file and used with Matlab’s
dlmread function. I created a wrapper function to use observations in the Matlab

framework for estimation named readFromCsv.m.

43



4.4 Simulation result

There are three road networks to test and tune the estimation framework. Two of
them has simulated road traffic from VISSIM and all three can be used also with
random state process.

The main network to test the estimation is presented in Fig. 4.8. It represents
two alternative routes and congestions on each route at different times.

To qualify the different parameter values the relative standard deviances (RSD)
were calculated of the states by formula 4.6. tt.. ,;(j) denotes the estimated travel

h

time for the it segment in the jth time tick. tt,cqi(7) defines the real travel times

on segments similarly to the estimated travel times.

(i iV 2

27}: ttest,l(])_t?rcial,z(J)

RSDZ _ J Jj=0 < ttreal,i(7) ) (46)
n

The RSD was calculated by Matlab’s built in function nanmean according to

Listing 4.11. R and E denotes the real and estimated travel times for each segment
and time tick in a matrix form. Because real travel times are not available for all time
period was used the NaN version of the mean function to ignore “not a number” ,NaN

values.

Listing 4.11: Calculation of RSD value for all states
sqrt (nanmean (((R-E)./R)."2,1))

4.4.1 Update frequency

The update interval is highly dependent on the segmentation of the road network
and the amount of observations over time.

The longer period of update results smoother, more accurate travel time val-
ues but the shorter one provides lower accuracy and more immediate, spot values
applicable for quick decision making.

Several values were tried as update frequency. Figure 4.9 displays the real travel
time on segment 1 from the 200" second till the 245" second and the estimated
travel times for 1sec, 2sec, 5sec and 10sec update intervals.

As can be seen the estimations with 1sec and 2sec update period followed im-
mediately the real state, the other two were significantly slower but smoother. The
estimation with 1sec update interval is fragmented due to scarce amount of obser-
vation for each update but the one with 2sec seems to be smooth enough.

The relative deviations of the estimations of the various tests can be seen in

Table 4.3.
44



real
1s 1
2s
5s
10s

13.6

N
w
IS

N
w
)

Travel time (s)

12.8

12.6

| | | | | | | | S | |
200 205 210 215 220 225 230 235 240 245
Simulation time (s)

Figure 4.9: Effect of different update periods on the estimation

Table 4.3: Deviance of estimation for all segments with varying update frequency

update RSD of estimation on segment

interval 1 2 3 4 5 6 7 8
lsec 0.0115 0.0487 0.0787 0.0442 0.0783 0.0981 0.1227 0.1037
2sec 0.0102 0.0352 0.0463 0.0287 0.0696 0.0639 0.0891 0.0972
Ssec | 0.0101 0.0287 0.0260 0.0411 0.0780 0.0655 0.0809 0.1060
10sec | 0.0231 0.0391 0.0336 0.0656 0.0998 0.0836 0.0835 0.1017

The real state function values are interpolated for each second, it was calculated

just for every fifth second and is under sampled.

4.4.2 Variance of assumptions

The assumptions discussed in Section 3.3.4 and 3.3.5 are implemented as fake ob-
servations. Lots of artificial observations are generated and passed to the Kalman
filter for each update cycle to gain observability of the dynamic system and amend
the estimation of states. These observations are concatenated to the real, incoming
observations and are treated as real ones.

A real observation is weighted by technology dependent variance of error. The
Kalman filter uses the variance in the estimation process as some kind of weight.
The observations with small variance means more accurate value thus has a greater
weight at estimating the real state.

The variances of fake observations are parameters of the estimation process. As
they are artificial observations the value of variances is freely eligible.

The variances should be large enough not to contradict the real observations but

45



small enough to be error prone and stable.

Free flow rate keeping

The assumption generates the observation
thifg - tlesti — tyfitesty =0

also discussed in Eq. 3.6. The variables are the estimated values tt.s,; and tt.s ;
in the equation. The constant term is 0 indicating that the difference of rates of
estimated and free flow travel times of following segments should be minimal.

2 since the

The physical dimension of the constant term of the equation is sec
equation represents the product of travel times.

Take the difference of the two sides of the equation as a random variable that
should be estimated. The approach of Kalman filter requires that the random vari-
ables are of normal distribution. The assumption states that the expected value of

D is 0.

D =ttppittesri—thifittess; — 0 (4.7)
Var [D] = E (D — E[D])’] (4.8)
Var|D| =E [DQ] (4.9)

The variance of the observation represent the random variable of the difference
of the two sides of the equation. The higher value tolerates more difference than the

lower.

Table 4.4: Deviance of estimation for all segments for different variances of artificial

rate keeping observations

variance of RSD of estimation on segment
observations 1 2 3 4 5 6 7 8
400 0.0773 0.3149 0.4061 0.2666 0.1692 0.6694 0.5191 0.2769

4 000 0.0157 0.1526 0.2461 0.1504 0.1208 0.3630 0.3583 0.1217
40 000 0.0098 0.0572 0.1094 0.0549 0.0813 0.1272 0.1626 0.1065
400 000 0.0097 0.0283 0.0338 0.0269 0.0689 0.0553 0.0810 0.1069

4 000 000 | 0.0097 0.0265 0.0226 0.0267 0.0670 0.0531 0.0769 0.1069

Table 4.4 shows the deviation of the estimation from the real travel time on
the segments for four different value of variance. As can be seen the higher value

influences less the real observations and the correctness of the estimation.
46



Ly

Travel time (s)

17

16

15

14

13

12

11
0

real
400
—— 4k

40k

400k ||

100 150 200 250
Simulation time (s)

Figure 4.10: Effect of different update periods on the estimation of travel time on segment 1

300



For a heterogeneous segmentation of the road network with widely varying travel
times of the segments there should be different values set as variances for each pair
of segments. The simulated networks were quite homogeneous in this aspect so the
variance of the observations were the same constant parameter for all following
segment pair.

As seen in Table 4.1 the free flow travel times of segments are about 15sec. The
typical value of a term in the Eq. 3.6 is about 15 - 15 = 225 omitting the dimension
unit. The dimension of the variance of D is the square dimension of D, it is sec®.

A good point to start to guess values for variance is the 4™ power of the typical
travel time. Figure 4.10 displays the estimations for four different order of magnitude
set as variance.

As can be seen the plots for variance values 40000 and 400000 are overlapping
as the higher magnitudes, too. The plot for variance of 4000 can be differentiated
from the previously mentioned ones and the plot for value 400 has a somewhat huge

constant error.

Free flow estimation for weak traffic

The assumption for the case of rare traffic discussed in Section 3.3.5 states that a
transient function should be utilised to estimate free flow travel time for segments
without observations overlapping them. This assumption creates artificial observa-
tions that are served to the Kalman filter among real observations.

These fake observations do not conflict with real ones because they are injected
for segments without any observation overlapping. Therefore the only observations
to cope with are from the assumption of free flow rate keeping.

It is an open question to decide which assumption should be the stronger, which
should have less variance then the other.

There are two possible scenarios that these assumptions get in conflict with each

other, both are reasonable.

dense traffic

weak traffic

Figure 4.11: Scenario of following segments with differing observation amount

One possible scenario is when the two segments one without information about
traffic and the other with a valid estimation based on real observations are following
pair without a road junction. Figure 4.11 shows this situation. The scene shows that

for the first segment there is weak traffic or it cannot be measured. For the first case

48



a source or sink should be the explanation while the latter case suggests error in the
infrastructure.

The solution of the former case is similar to the second scenario. A solution could
be for the second case that homogeneous traffic is assumed and the rate keeping
assumption is the stronger. Because the framework does not have the feature to
test errors in the infrastructure and data sources the variance parameter was set up

according to second scenario.

weak traffic

dense traffic

Figure 4.12: Scenario of junction with a dominant route

The second scenario as displayed in Fig. 4.12 states that there is a dominant
route through the junction and an arm with unmeasurable traffic.
In this case the free flow travel time is more appropriate estimation for the branch

without observations because a traveller can pass that segment in free flow state.

Table 4.5: Deviance of estimation for different values of variance of assumption

variance of RSD of estimation on segment
observations 1 2 3 4 5 6 7 8
2 0.0112 0.0339 0.0226 0.0819 0.1195 0.0919 0.0853 0.1077
20 0.0111 0.0325 0.0301 0.0463 0.0850 0.0723 0.0866 0.1044
200 0.0115 0.0487 0.0787 0.0442 0.0783 0.0981 0.1227 0.1037

2000 0.0128 0.0652 0.1187 0.0577 0.0823 0.1387 0.1638 0.1037
20 000 0.0149 0.0678 0.1262 0.0628 0.0839 0.1463 0.1706 0.1041
200 000 0.0154 0.0675 0.1261 0.0640 0.0843 0.1455 0.1700 0.1040

The artificial observation created for a segment contains only that segment and
its value is the free flow travel time on the segment. Thus the physical unit of the
variance is sec?.

As can be seen in Table 4.5 and Fig. 4.13 the huge values of the variance are
inconsistent with the free flow rate keeping assumption causing flickering in the
estimation. Especially it causes the estimation flicker at frequent update cycles and

scarce amount of observations.

49



real
estimated

261 1

241 .

travel time(s)

22 B

20 B

18} 1

110 120 130 140 150 160 170 180 190 200 210
simulation time(s)

Figure 4.13: Estimation for high variance of scarce data assumption

4.4.3 Transient function to free flow estimation

The assumption for the case of rare traffic discussed in Section 3.3.5 states that a
transient function should be utilised to estimate free flow travel time for segments
without observations overlapping them.

The transient function of Eq. 3.9 has two parameters to set up. First the duration
of the transit noted as t;,qnsiens and second the exponent that determines the shape
of the function.

The time interval and the shape of the function supports the purpose that de-
pending on the current traffic conditions and the applied technology the short gap
between valid observations could be filled. For the case of weak or no traffic on the

road segment the free flow travel time should give a correct guess.

Duration of transit to free flow travel time

The correct duration of transit to free flow of the current road segment depends
mainly on the road network. This is implemented as a simple constant parameter in
the framework but the fundamental diagram of the traffic flow could also be utilised
to a quick and accurate estimation method.

The only scenario that tested the duration values were about the short period of
observation scarcity, just a short time that observations are missing for a few update
cycles.

That is the reason why the deviation of estimation does not get worse as the

higher values are probed. For values above 30sec the RSD does not really change.

50



Table 4.6 and Fig. 4.14 shows the estimations and their relative deviances.

Table 4.6: Deviance of estimation for different t;,q4nsien: duration times

duration RSD of estimation on segment
of transit 1 2 3 4 5 6 7 8
3sec 0.0098 0.0251 0.0258 0.0378 0.0828 0.0635 0.0765 0.1069
15sec 0.0097 0.0280 0.0325 0.0273 0.0701 0.0556 0.0807 0.1069
30sec 0.0097 0.0282 0.0336 0.0270 0.0691 0.0553 0.0810 0.1069
45sec 0.0097 0.0283 0.0337 0.0269 0.0689 0.0553 0.0810 0.1069
150sec 0.0097 0.0283 0.0338 0.0269 0.0688 0.0553 0.0811 0.1069
81 real
3sec
80 g 15sec [
30sec
751 \\/ 45sec ||
150sec
s o / 7
g 7
= 651 </ B
% /\/ _ Vi
= 60| / .
55 / i

50

45t

80

100

120

Exponent of power function

The exponent influences the shape of the transient function which is basically a
power function. If the exponent is 1 then the function is linear in the transient phase.
The key role of the power function is that it should slowly transit the estimation to

free flow in mind of the case of short period of data absence. Therefore the exponent

140
simulation time(s)

values beneath one are unnecessary to try.

4.4.4 Results

With the tune of parameters according to the above tests Fig. 4.15 shows the plot

of real and estimated values of the simulated road network of two altering routes

described in Section 4.3.1.

51

160

Figure 4.14: Real and estimated travel times on segment 4




The parameters are set as in Table 4.7. The results relative standard deviance is

displayed in Table 4.8 for each road segment.

Table 4.7: Parameters for simulation
Parameter Symbol Value

Update interval glSimulationStep 3sec

Variance of
assumption of glVarianceOfRatioEstimation 400000sec?

ratio keeping

Variance of
assumption of glVarianceOfNoDataEstimation 200sec?

free flow travel time

Duration of

glTimeToFreeFlowIfNoData 30sec
transit
Exponent of
transient glExponentOfSpeedToFreeFlowEstimation 2

power function

Table 4.8: Deviation of estimation on segments
Segment  RSD

1 0.0097
0.0282
0.0336
0.0270
0.0691
0.0553
0.0810
0.1069

o 1 O Ot = W N

52



14 80

13 60
12 40
B 0 100 200 300 200 100 200 300
12 60

10 40

o]
N
o

0
g 6 0
= 0 100 200 300 0 100 200 300
©
©
=10 35
30
9
25
8
20
7 15
0 100 200 300 0 100 200 300
100 10
80
8
60
6
40
20 4
0 100 200 300 0 100 200 300
simulation time(s) Reél )
— Estimation

Figure 4.15: Simulation result

53



Chapter 5
Conclusion

The results of the simulation is encouraging but the validation and testing period

would reveal lots of difficulties and possibilities of development.

5.1 Implementation

The implementation related difficulties could be separated as theory related and

technical toughness.

5.1.1 Probability theory

Kalman filter method assumes Gaussian errors and white noises over the observa-
tions and states. The noises in the simulation were not examined to be true Gaussian
and data sources could have diverse technology-depending random noise.

The divert kinds of random noise could point to other estimation processes than
the linear quadratic underlying the Kalman filter. The behaviour of noises could be
examined by field testing or analysing the mathematical models of the field like the
theory of electromagnetic radiation used for analysing cellular networks.

Additionally, if a great amount of location relevant data is already recorded, data
mining algorithms could be utilised to unfold hidden location relevant relations in
the recorded data set.

5.1.2 Implementation difficulties

The current implementation is not a pleasant code in the sense of software develop-
ment. It started from a proof of concept script and evolved in a quite flexible but
not really reusable framework. It is capable of testing the feasibility of the idea and

it accomplished.

54



A key feature of the framework is that it can run without the commercial Matlab
environment and can be used for testing with the open source Octave. This feature
required to omit complex data structures from the code thus the clean code and

recycling were sacrificed.

5.1.3 Application in traffic control

The simulation result pointed out that the algorithm is feasible and could be used
as a basis for complex urban traffic control. It can provide reliable, detailed and
accurate information about traffic low on a complex road network and can merge
location aware observations from divert technologies as sources.

A real application of the idea needs more research and tune of the parameters

and reimplementation of the code in a more robust and flexible environment.

5.2 Future works

5.2.1 Fundamental diagram based traffic assumption

The fundamental diagram of traffic flow defines the connection between the traffic
density and traffic flow velocity. Depending on the applied technologies the amount
and the complexion of the incoming observations could be used to estimate traffic
density and thus improve the estimation of traffic flow parameters.

For example the automatic licence plate recognition technology registers all pass-

ing travellers and can measure traffic flux directly.

2
L

Max

bound flow

pk:crngeation Wilee flow

instable HC stable I1"“"f V [km/h] *

flow velocity

traffic flux O [cars'h]

Figure 5.1: Speed-Flow diagram

The connections of other technologies and the traffic flux are less direct and
need more researches both on the technology side and on the user customs on that
55



technology, for example mobile telephony or bluetooth devices.
In the current implementation only a small section of the fundamental diagram

was used to enhance the estimation, the case of unmeasurable weak traffic flow.

5.2.2 Continuous time data update

The method of Kalman filter assumed cyclic updates of the states because the un-
derlying dynamic system has a discrete time cycle. An interesting research topic
would be the application of a continuous time mathematical model. It could update
the states for each observation when it arrives and correlate with the dynamic traffic
flow more precisely. The short update cycles and the assumptions serve the same

purpose from a discrete viewpoint.

5.2.3 Incident detection

Section 4.4 about tuning of parameters showed that it is possible to detect sudden
alternation of traffic low and incident could be detected on that basis.

A rapid increase in travel times can indicate a congestion if it is extended over
the road network or a traffic accident if it affects just a few segments of the network.

If multiple data sources are used, they could be used to check each other and
errors in the infrastructure could turn out. The estimation process could detect a flaw
in one data source and notify the supervisor or it could adapt itself to the detected
slip. This latter one should be analysed because a perfunctory implementation could

cause inaccurate estimation and thus pile up faults.

5.2.4 VISSIM based integrated simulation environment

The increasing number of location based services and the demand of intelligent trans-
portation systems point towards the claim of a testing framework in the development
processes of these applications.1

A microscopic traffic modelling software like VISSIM could fulfil the need and
provide a usable integrated test environment if additional software modules were
developed to bridge the traffic simulation and the developed ITS application.

An integrated toolbox was created for VISSIM to form zones over the road
network and during the simulation it could provide one or more data source streams

of location information about travellers of the network.

56



Appendix A

Source code of framework

A.1 alter.m

function G = alter ()

% o---0

yA / \

% o---0 o---o0

YA \ /

yA o---0

G=[

012 0 O O O 0 O0;
o o7v.e 7.7 0 O O O;
0 0 O 0 25.2 O O O;
0O 0 O 0O 0 25.2 O O;
0O 0 O O 0O 0 19 0;
0O 0 O O 0O 0 19 O0;
0O 0 O O 0 0 0 5

6 0 0 O0O o o o0 O

—

end

o7



18

19

20

21

A.2 defaultEstimation.m

function [corMx, correction, corQ] =
defaultEstimation (graph,default,quality)
corMx = eye(size(default ,1));

correction = default;
corQ = ones(size(default))*quality;
end

A.3 defaultIfNoData.m

function [corMx, correction, corQ] =

defaultIfNoData(graph,default ,mesMx ,prevEstim)

global glVarianceOfNoDataEstimation;
global glExponentOfSpeedToFreeFlowEstimation;
global glNumberOfEdges;

global glTimeToFreeFlowIfNoData;
global glTimeOfLastData;

global glTime;
global glSimulationStep;

len = glNumberOfEdges;
if isempty(glTimeOfLastData)

glTimeOfLastData = zeros(len,l);

end

Q.
Il

glTimeToFreeFlowIfNoData;

exponent = glExponentOfSpeedToFreeFlowEstimation;

Quality = glVarianceOfNoDataEstimation;

58



33

34

35

36

37

38

39

40

41

48

49

50

51

end

if isempty(mesMx)

[corMx, correction, corQ] =

defaultEstimation (graph,default,Quality);

else

corMx

= [1;

num=0;

correction=[];

for k

end
corQ

end

= [1:1en;sum(mesMx,1)]
if k(2)==
line = [zeros(1,k(1)-1) 1 zeros(l,len-k(1))];

corMx=[corMx;linel;
t = glTime-glTimeOfLastData(k(1));
pt = t - glSimulationStep;
if t < d
trans = (1-(t/d) exponent);
transPrev = (1-(pt/d) exponent);
correction=[correction;
(prevEstim(k (1)) -
default(k(1)))/transPrev*...
trans+default (k(1))];
else
correction=[correction; default(k(1))];
end
num=num+1;
else
glTimeOfLastData(k(1l)) = glTime;

end

= Quality*ones (num,1);

59



1

3

A.4 figurelLayout.m

function H=figureLayout (a,b)

H=zeros(a,b);
for i=1:a*b

H(i)=1i;

end

end

A.5 getEdges.n

function edges = getEdges (graph)
global glNumberOfVertices;
len = glNumberOfVertices;

edges = zeros(len);

n = 0;
for i=1:1len
for j=1:1len
e = j+(i-1)x*1len;
if graph(e)~=0
n=n+1;
edges (j,i)=n;
end
end

end

end

60



A.6 interpolateCSV.m

function state = interpolateCSV(file,delimeter ,time,skip ,map)

global glRealVissimCsvFile;
global glNumberOfEdges;

if isempty(glRealVissimCsvFile)
glRealVissimCsvFile =
sortrows (dlmread(file,delimeter ,skip,0),3);

end

state = zeros(glNumberOfEdges ,1);

csv = glRealVissimCsvFile;

times = csv(:,1);

corr = [1.0239 1.1064 1.0877 1.01 1.01 1.0323 1.0214

% because vissim links are shorter of the connectors

for i=1:glNumberOfEdges

values = csv(:,2%i);
cars = csv(:,2%i+1);
state(map(i)) = corr(map(i))x*

interpl (times (cars>0) ,values (cars>0),time);
end

end

A.7 interpolateMatrix.m
function yi=interpolateMatrix(X,Y,xi)
yi=zeros(size(xi));

for i=1:size(X,2)
yi(i)=interpl1 (X(:,1),Y(:,1i),xi(1));
end

end

61

1.0748];



1

%)

A.8 KalmanFilter.m

fun

end

ction estimation =

KalmanFilter (graph,prevEstim,default ,obsMx,...

observation,qualities)

I = eye(length(prevEstim));

[Lk,m,P,e] = dlqe(I,I,obsMx,I,diag(qualities));

estimation = prevEstim + Lk*(observation

A.9 KalmanWithAssumptions.m

fun

end

ction estimation =
KalmanWithAssumptions (graph,prevEstim,

default ,mesMx ,measurement ,mesQ)

[corMx, correction, corQ] =

-obsMx*prevEstim) ;

getCorrections (graph,default ,mesMx ,prevEstim);

ObsMatrix = vertcat(mesMx, corMx);
Observation = vertcat(measurement,
Qualities = vertcat(mesQ,corQ);

estimation =
KalmanFilter (graph,prevEstim,default,

ObsMatrix ,Observation,Qualities);

62

correction);



31

32

33

34

A.10 keepDefaultRatio.m

function [corMx,

global
global
global
global

glEdges;
glNumberOfVertices;
glNumberOfEdges;

correction,

corQ] =

glVarianceOfRatioEstimation;

keepDefaultRatio (graph)

genLine=0@(A,B,A w,B_w) [zeros(1,A-1) B_w zeros(1,B-A-1)...
-A w zeros(l,glNumberOfEdges-B)];

corMx=1[];

for vertex=1:glNumberOfVertices

for from=1:glNumberOfVertices

if (from_edge_w~=0)

for to=1:glNumberOfVertices

from_edge w = graph(from,vertex);

to_edge _w=graph(vertex,to);

if(to_edge _w~=0)

from_edge = glEdges(from,vertex);

to_edge = glEdges(vertex,to);

line = [];

if from_edge < to_edge

line = genLine (...

from_edge ,to_edge ,from_edge_w,to_edge_w);

elseif to_edge < from_edge

line = genLine (...

to_edge ,from_edge ,to_edge_w,from_edge_w);

end

corMx = [corMx;

end

63

linel];



end

end
end
end
correction = zeros(size(corMx,1) ,1);
corQ = ones(size(corMx,1),1)*glVariance0fRatioEstimation;
end

A.11 1long.m
function G = long()

% multi.inp
% 0-—--0---0---0---0---0

%
G=[

10.38 0 0 0 0
0 10.77 O 0 0

0 10.55 0 0
0 0 10.43 O
0 0 0 10.58;

0 0 0 0

J

3

0
0
0
0
0
0

o O O O



A.12 main.m

1 function [Time,AllTraveltimes ,AllEstimations] = main(run)
> %hsettings random;
5 hsettings vissim_long;

+ settings_vissim_alter;

¢ global glTime;
global glSimulationStep;

s step = glSimulationStep;

1w FreeflowTraveltimes = states(Graph);

11 ActualTraveltimes = FreeflowTraveltimes;

13 AllTraveltimes zeros (run/step,size(FreeflowTraveltimes ,1));

2 AllEstimations = zeros(run/step,size(FreeflowTraveltimes ,1));
15 EstimatedTraveltimes = FreeflowTraveltimes;

16

17 Time = step:step:run;

15 for time=Time

19 glTime = time;

20

21 ActualTraveltimes = nextState (ActualTraveltimes , time);
22 [MeasurementMatrix, Measurements, Qualities] =

23 getMeasurement (Graph, ActualTraveltimes,time);

25 PreviousEstimation = EstimatedTraveltimes;
26 EstimatedTraveltimes = getEstimation(Graph, ...
27 PreviousEstimation ,FreeflowTraveltimes, ...

28 MeasurementMatrix ,Measurements ,Qualities);

30 AllTraveltimes (time/step,:) ActualTraveltimes ’;

31 AllEstimations (time/step,:) EstimatedTraveltimes ’;
32

33 end

3« end

65



A.13 negyzet.m

function G = negyzet ()

% o-—--0---0
%o
% o-—--0---0
%o | | |
h o---o---0
G=[

020 020 0 O O O O
20 020 020 O O O O
020 0 0 020 O O O
20 0 0 020 020 O O
0 20 0 20 0 20 O 20 O;
0
0
0

O 020 0 20 O O O 20;
O O 020 O O 0 20 ;
O O O 020 0 20 0 20;
O 0 O O 020 0 20 O
1;

end

A.14 noiseUni.m

function next = noiseUni(state,minVar ,maxVar);

len = max(size(state));

next = state + rand(len,l1)*(maxVar-minVar)+ones(len,1)*minVar;
end

66



A.15 plotInMatrix.m
function plotInMatrix(time, real, estimation, how)
[Height, Width] = size (how);

for x=1:Width
for y=1:Height

subplot (Height ,Width, (y-1)*Width+x) ;
line = how(y,x);

plot(time,[real(:,line) estimation(:,line)])

end

end
legend(’Real’,’Estimation’)

end

A.16 plotRealEstimation.m
function plotRealEstimation(time,real ,estimation,line)

plot (time, [real(:,line) estimation(:,line)])

legend(’Real’,’Estimation’)

end

67



A.17 randomMeasurement.m
function [mesMx, mes, qual = randomMeasurement (graph, state);
global glRandomMeasurementNumberOfMeasurementsInEachTurn;

global glRandomMeasurementDecreaselNum,;

global glRandomMeasurementIncreaselNum;

numMes = glRandomMeasurementNumberOfMeasurementsInEachTurn;
minVar = glRandomMeasurementDecreaseNum;
maxVar = glRandomMeasurementIncreaselNum;

len = max(size(state));

mesMx = zeros (numMes,blen);

for i=1:numMes
mesMx (i,:) = randomRoute (graph);

end

mes noiseUni (mesMx*state, minVar, maxVar);

qua ones (numMes ,1) *(maxVar-minVar)~2/12;

end

68



A.18 randomRoute.m

function obsVector = randomRoute (graph)

glo
glo
glo
glo

end

bal glShortestPathNeighbours;
bal glNumberOfVertices;

bal glEdges;

bal glNumberOfEdges;

len = glNumberOfVertices;

a = randi(len);
b = randi(len);
while a==

b=randi (len);

end
start = min(a,b);
finish = max(a,b);

obsVector = zeros(l,glNumberOfEdges);

nextVert finish;

prevVert

while prevVert~=0

obsVector (glEdges (prevVert ,nextVert))=1;

nextVert prevVert;

prevVert

end

69

glShortestPathNeighbours (start ,finish);

glShortestPathNeighbours (start ,nextVert);



31

32

33

34

A.19 readFromCsv.m

function [mesMx, mes, qua] =
readFromCsv (file, delimeter, time, step)

% header: links,time,traveltime

global glObservationCsvFile;
global glNumberOfEdges;

if isempty(glObservationCsvFile)
glObservationCsvFile =

sortrows (dlmread (file ,delimeter ,1,0) ,2);

end

csv = glObservationCsvFile;

rows = csv(csv(:,2)>(time-step) & csv(:,2)<=time,:);
variance = 1;

numOfMeasurements = size(rows,1);

if numOfMeasurements==

mesMx=1[];
mes=1[];
qua=[];

else
mesMx=zeros (numOfMeasurements ,glNumber0fEdges) ;
mes=zeros (numOfMeasurements ,1) ;

qua=ones (num0OfMeasurements ,1)*variance;

for i = 1:numOfMeasurements
mesMx (i,:)= bitget(rows(i,1) ,2:(glNumber0fEdges+1));
mes (i)=rows (i,3);
end
end

end

70



A.20 settings_random.m

Graph=negyzet () ;
setupGlobals (Graph);

nextState = @(state,time) noiseUni(state, -1, 1);

getMeasurement = Q(graph, state, time)
randomMeasurement (graph, state);

getEstimation = @(graph,prevEstim,default,...
obsMx ,observation,qualities,time)
KalmanWithAssumptions (graph,prevEstim, ...

default ,obsMx,observation,qualities);

A.21 settings_vissim_alter.m
Graph=alter ();

setupGlobals (Graph);

global glSimulationStep;

nextState = Q@(state,time)
interpolateCSV(’real.csv’,’;’,time ,20,[4 5 1 2 3 6 7 8]);
getMeasurement = Q@(graph, state, time)
readFromCsv(’vissim alter observation.csv’,’,’,
time ,glSimulationStep);
getEstimation = @(graph,prevEstim,default,
obsMx ,observation,qualities,time)
KalmanWithAssumptions (graph,prevEstim,default,

obsMx ,observation,qualities);

71



A.22 settings_vissim_long.m

Graph=long();
setupGlobals (Graph);
global glSimulationStep;

nextState = Q@(state,time)

interpolateCSV(’multi.rsz’,’;’,time,17,[1 2 3 4 5]);

getMeasurement = Q@(graph, state, time)
readFromCsv(’vissim long observation.csv’,...
>,7 ,time ,glSimulationStep);
getEstimation = Q@(graph,prevEstim,default,...

obsMx ,observation,qualities,time)

KalmanWithAssumptions (graph,prevEstim,default, ...

obsMx ,observation,qualities);

72



A.23 setupGlobals.m

function setupGlobals(G)

global glGraph;

global glShortestPathNeighbours;
global glNumberOfVertices;
global glEdges;

global glDefaultEdgeWeights;
global glNumberOfEdges;

global glTime;

global glTimeOfLastData;

glGraph = G;

[dist, neighbour] = dijkstra(glGraph,[],[]1);

glShortestPathNeighbours = neighbour;
%randi = @(n) round(rand()*(n-1))+1;
glNumberOfVertices = max(size(glGraph));
glEdges = getEdges (glGraph);
glDefaultEdgeWeights = states(glGraph);

glNumber0fEdges = max(size(glDefaultEdgeWeights));

glTime = O;

glTimeOfLastData = zeros(glNumberOfEdges ,1);

global glObservationCsvFile;
glObservationCsvFile=[];

global glRealVissimCsvFile;
glRealVissimCsvFile=[];

setupParameters () ;

end

73



A.24

setupParameters.m

function setupParameters ()

global
global
global
global
global
global
global
global

glVarianceOfRatioEstimation;
glVarianceOfNoDataEstimation;
glExponentO0fSpeedToFreeFlowEstimation;
glRandomMeasurementNumberOfMeasurementsInEachTurn;
glRandomMeasurementDecreaselNum;
glRandomMeasurementIncreaselNum;

glSimulationStep;

glTimeToFreeFlowIfNoData;

glVarianceOfRatioEstimation = 400000;

glVarianceOfNoDataEstimation = 200;

glExponentO0fSpeedToFreeFlowEstimation = 2;

glRandomMeasurementNumberOfMeasurementsInEachTurn = 30;
glRandomMeasurementDecreaseNum = -1;
glRandomMeasurementIncreaseNum = 1;

glSimulationStep = 3;

glTimeToFreeFlowIfNoData = 30;

end

A.25

states.m

function S = states (G)

S=[1;
for
end

end

i=1:prod(size(G))

if G(i)~=0

S=[S; G(i)];

end

74



List of Figures

2.1

2.2

2.3

2.4
2.5
2.6
2.7

3.1

3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

GSM architecture [12] . . . . . . ...
Axel Kiipper, Location Based Services, p94

Location areas [12] . . . . . . . . . ... ... ...
Axel Kiipper, Location Based Services, p100

BlipTrack™ Bluetooth Traffic sensor . . . . . . . .. ... ... ...
http://www.bliptrack.com/uploads/pics/
Bliptrack-traffic-sensor-ENGLISH---web. jpg

Client side data collection . . . . . . . . . . . . . ... ... ..
Server side data collection . . . . . . . .. ...
Third party data collection . . . . . . . ... .. ... ... .. ... .

User id encryption . . . . . . . . . ..

Basic concept of Kalman filtering . . . . . .. ... ... ... ....
http://en.wikipedia.org/wiki/File:Basic_concept_of_Kalman_
filtering.svg

Route choice between two points of an observation . . . . . . . .. ..
Three segmented road with two over-covering observations . . . . . .
Rare traffic offers insufficient amount of observations . . . . . .. ..

Fundamental diagram of traffic low . . . . .. .. ... ... ... ..
http://en.wikipedia.org/wiki/File3AFundamental_Diagram.PNG

Transient function to free flow travel time value . . . . . . . . . . ..

Rough flowchart of estimation test framework written for Matlab
Sample road network . . . . . . ...
Detailed flowchart of the framework’s main loop . . . . . .. . .. ..
Current and previous estimation on transient function . . . . . . . . .
Output of plotInMatrix function . . . . . . . . ... ... ... ...
Random process as travel time of a segment plotted over time
VISSIM graphical user interface . . . . . . .. .. ... .. ... ...
Simulated road network . . . . .. ..o

Effect of different update periods on the estimation . . . . . . . . ..

75



4.10

4.11
4.12
4.13
4.14
4.15

5.1

Effect of different update periods on the estimation of travel time on

segment 1 . . . . .. A7
Scenario of following segments with differing observation amount . . . 48
Scenario of junction with a dominant route . . . . . . . . ... .. .. 49
Estimation for high variance of scarce data assumption . . . . . . .. 50
Real and estimated travel times on segment 4 . . . . . . . .. .. .. 51
Simulation result . . . . . ... 53
Speed-Flow diagram . . . . . . . ... ... 55

http://en.wikipedia.org/wiki/File}3AFundamental_Diagram.PNG

List of Tables

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8

Segment properties of the road network . . . . . . ... ... ... 41
Temporal speed limits on links . . . . . . ... ... ... ....... 41
Deviance of estimation for all segments with varying update frequency 45
Deviance of estimation for all segments for different variances of ar-

tificial rate keeping observations . . . . . . . .. ... 46

Deviance of estimation for different values of variance of assumption . 49

Deviance of estimation for different t;.4,sient duration times . . . . . . 51
Parameters for simulation . . . . . . ... ... ... 52
Deviation of estimation on segments . . . . . . . ... ... ... .. 52

76



Bibliography

[1] Albert-Laszl6 Barabési. Bursts. Dutton Adult, 2010.

[2] BlipTrack. Homepage. http://www.bliptrack.com/traffic/
area-of-operations/, May 2012.

[3] Rick Burgess. Google maps gets real-time traffic, crowd-
sources android gps data. http://www.techspot.com/news/
48015-google-maps—-gets-real-time-traffic-crowdsources-android-gps-data.

html, Apr 2012.

[4] N Caceres, J P Wideberg, and F G Benitez. Deriving origin — destination data
from a mobile phone network. Engineering and Technology, 1(1):15-26, 2007.

[5] Francesco Calabrese. Real-time urban monitoring using cell phones: A case

study in rome. IEEE Transactions on Intelligent Transportation Systems, 2011.

[6] Swarco Traffic Systems Gmbh. BLIDS flyer. http://www.swarco.com/en/
content/download/8058/101437/file/DRIVE-ON-1-2011_1.pdf, Sep. 2011.

[7] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Under-
standing individual human mobility patterns. Nature, 453(7196):779-782, June
2008.

(8] 1. Wells J. White. Extracting origin-destination information from mobile phone

data. Technical report, 2002. (unpublished working paper).
9] Michael G. Kay. dijkstra.m. http://www.ise.ncsu.edu/kay/, May 2012.
10] GeoX Kft. EgérUt Homepage. http://www.egerut.com, May 2012.
p g

[11] Zoltdin Koppéanyi.  Emberi mozgasmintak vizsgalata GSM alapt hely-
meghatarozassal. Master’s thesis, BUTE, 2011.

[12] Axel Kiipper. Location-based Services. John Wiley & Sons, 2005.

77



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Toshio Miki Linda Ackerman, James Kempf. Wireless location privacy: Law
and policy in the U.S., EU and Japan. Internet Society, 2003.

Trafficmaster Ltd. Real time traffic information. http://www.trafficmaster.

co.uk/content/1/60/real-time-traffic-information.html, Mar. 2012.

Jean luc Ygnace Chris Drane, Y. B. Yim, Renaud De Lacvivier, Jean luc Yg-
nace Inrets, Chris Drane Uts, and Renaud De Lacvivier Enac /sodit. Travel
time estimation on the San Francisco Bay Area network using cellular phones

as probes. Technical report, 2000.

NL Openbaar Ministerie.  Trajectcontrole.  http://www.flitsers.nl/
trajectcontrole, Mar. 2012.

Einar Snekkenes. Concepts for personal location privacy policies. In ACM

Conference on Electronic Commerce, 2001.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-Laszl6 Barabasi. Lim-
its of Predictability in Human Mobility. Science, 327(5968):1018-1021, Febru-
ary 2010.

Tamés Tettamanti, Hunor Demeter, and Istvan Varga. Route choice estimation

based on cellular signaling data. Acta Polytechnica Hungarica, in press.

Janos Téth PhD. Kozuti informatika jegyzet. http://www.kku.bme.hu/
kepzes_bsc/segedletek/BMEKOKUA212/kozuti_informatika.pdf, 2012.

D. Valerio. Road traffic information from cellular network signaling. Technical

report, Telecommunications Research Center Vienna, 2009.
PTV Vision. VISSIM 5.40-01 - User Manual. PTV AG, 2011.

Vysionics. Routehawk jtms. http://www.vysionics.com/RouteHawk-JTMS/,
May 2012.

Wikipedia. Bluetooth. http://en.wikipedia.org/wiki/Bluetooth, Feb
2012.

Wikipedia. Global positioning system. http://en.wikipedia.org/wiki/GPS,
May 2012.

Wikipedia. Global system for mobile communications. http://en.wikipedia.
org/wiki/GSM, Feb 2012.

78



27] Wikipedia. Kalman filter. http://en.wikipedia.org/wiki/Kalman_filter,
Jan 2012.

28] Wikipedia. Radio-frequency identification. http://en.wikipedia.org/wiki/
RFID, Feb 2012.

29] Wikipedia. Satellite navigation. http://en.wikipedia.org/wiki/
Satellite_navigation, Feb 2012.

[30] Qing yu Luo. Measuring the external costs of urban traffic congestion. Technical

report, International Conference on Transportation Engineering, 2007.

[31] Yueming Yuan, Wei Guan, and Wei Qiu. Map matching of mobile probes based
on handover location technology. In ICNSC, pages 587-592. IEEE, 2010.

[32] Mark Zuckerberg. Facebook. http://www.facebook.com/, May 2012.

79



