A practical manual for Vissim COM
programming in Matlab

1* edition for Vissim version 5.40

Tamas Tettamanti

Budapest University of Technology and Economics
Dept. for Control of Transportation and Vehicle Systems

2015

1. Vissim traffic simulation via COM interface programming

1. The purpose of Vissim-COM programming

Vissim is a microscopic road traffic simulator based on the individual behavior of the
vehicles. The goal of the microscopic modeling approach is the accurate description of the
traffic dynamics. Thus, the simulated traffic network may be analyzed in detail. The
simulator uses the so-called psycho-physical driver behavior model developed orignally by
Wiedemann (1974). Vissim is widely used for diverse problems by traffic engineers in
practice as well as by researchers for developments related to road traffic. Vissim offers a
user friendly graphical interface (GUI) through of which one can design the geometry of
any type of road networks and set up simulations in a simple way. However, for several
problems the GUI is not satisfying. This is the case, for example, when the user aims to
access and manipulate Vissim objects during the simulation dynamically. For this end, an
additional interface is offered based on the COM which is a technology to enable
interprocess communication between software (Box, 1998). The Vissim COM interface
defines a hierarchical model in which the finctions and parameters of the simulator
originally provided by the GUI can be manipulated by programming. It can be programmed
in any type of languages which is able to handle COM objects (e.g. C++, Visual Basic, Java,
etc.). Through Vissim COM the user is able to manipulate the attributes of most of the
internal objects dynamically.

2. The basic steps of Vissim-COM programming

The following steps formulate a general synthesis for the realization of any adaptive control
logic through Vissim-COM nterface:

1. One generates the overall traffic network through Vissim GUI (geometry, signal heads,
detectors, vehicle mputs, etc.).

2. After choosing a programming language which allows COM interface programming,
one creates the COM Client.

3. Programming ofthe simulation via Vissim COM with specific commands, e.g.
e simulation setting (multiple and automated runs),
e vehicle behavior,
e cvaluation during simulation run (online),
o traffic-responsive signal control logic.

4. Simulation running form COM program.

To understand the Vissim-COM concept, see the figure below which depicts a part of the
Vissim-COM object model. The Vissim-COM is based on a strict object hierarchy with two
kinds of object types:

e collections (array, list): store individual objects; the collection names in the
Vissim-COM object model are always in plural, e.g. "Links".

e containers: store a single object; the container names are always in singular, e.g.
’L]‘I]k”.

The head of this structure is the main Vissim object. Only one main object can be defined
and all other objects belong to the main object. To understand the object model, consider the
following example, which represents the access to a given road link:

1. Below the main object "Vissim" you can find the "Net" object, which compass all
network functionalities.

2. Collections are situated below object "Net".

3. Collection “Links” contains all the links of the network (previously defined vie Vissim
GUI)

4. To access a given "Link" object, one needs to define "Vissim", "Net", and "Links"
objects.

5. After accessing the given "Link", one may apply Vissim-COM methods (e.g.
"GetSegmentResult"), as well as ask or set attributes (e.g. "NAME").

This example is presented now by Visual Basic Script language. This practically shows the
access to “Link™ 10 (after the apostrophe character you can read comments):

Set vis = CreateObject("Vissim.Vissim") 'define Vissim main object

Set vnet = vis.Net 'define Net object

vis.LoadNet("D:\Example\test.inp") 'Load the traffic network

Set links = vnet.Links 'define Links collection

Set link 10 = links.GetLink ByNumber(10) 'Ask Link 10 as an object
[Vissm]

Net

—

Nodes Node

[Parkinglots |— ParkingLot]
—] Paths S Path]

|| DrivingBehaviorParSets |—| DrivingBehaviorParSet |

|—[TrafficCompositions |—{ TrafficComposition |

——| Vehiclelnputs || Vehiclelnput |

— Vehicles — Vehicle |

| RoutingDecisions |—{ RoutingDecision |
—

| Routes H Route |

_| DesiredSpeedDecisions |—| DesiredSpeedDecision |

ReducedSpeedAreas	——	ReducedSpeedAreas
StopSigns	— StopSign	
StaticObjects	—{ StaticObject	
L[SignalControllers |——{ SignalController |
]

Deteclors |—| Detector |
SignalGroups |—{ SignalGroup |
[—J
| SignaHeads |—{ SignalHead |

1. The Vissim-COM object model (PTV, 2012)

3. How to use Matlab for Vissim-COM programming?

In the following chapters the Vissim-COM programming is introduced by using Matlab
Script language. For this the Vissim-COM interface manual (PTV, 2012) provides a great
help. Although the examples of this official manual are written in Visual Basic, with a little
programming knowledge, we can transform them in other programming languages

(therefore into Matlab environment) as well. The principle of COM programming is the
same written in any language.

One of the main advantages of using Matlab, is the simplicity of the Matlab Script language.
Another very important aspect is that, the Matlab (as a mathematical software package for
practical purposes) has a lot of built-in functions. For example, optimization tasks can be
solved with the help of simple Matlab commands, statistical functions can be called freely
or simple matrix usage can be achieved. With the functions provided by Matlab a lot of time
and energy can be saved compared to other programming languages. Therefore, if yoa are
programming the Vissim traffic simulator via COM, but you also want to perform special
operations (e.g. optimization), you should choose the Matlab Script as the basic language
for programming Vissim-COM.

An important technical information is that before creating a Vissin-COM program, you
must register the Vissim as a COM-server in your operating system (so that other
applications can access Vissim-COM objects). You can do the registration after the
installation of Vissim by running the "RegVissimAsCOMSvr.vbs" Visual Basic Script file
in the /Exe folder ofthe installer folder.

2. Creating Vissim-COM server in Matlab

User may create a script file (extension ”.m”) in Matlab with the "File/New/Script" menu or
with the white paper icon located in the toolbar (see figure below).

a4 MATLAB 7.100 (R2010a) - =
File Edit Debug Parallel Desktop Window Help

ES L% L h Ef E’] @ | Current Folder:| D:\Vissim_Com_Matlab L= lil
Shortcuts (2] How to Add

Current Folder w08 X Editor - DAVissim_Com_Matlab\test.m * 0O » x ‘Workspace 02 x
@ & |« Vissim_Com_Matlab | o -)ﬂ\ﬁﬂ & E‘E‘E]'q RIS RAY B N IR >0 vl ax Eﬂ@sﬁ@kh- -
Name BEE| -0 |+]+ x|t |0 Name Value
| testinD @ This file uses Cell Mode, For information, see the rapid code iteratien video, the puk X
%ﬁ:es:.mp 1 % Vissim-COM programozas L
est.m
tesztbgr 2 - clear all;
|i=] tesztjpg 3 — close all;
£ vissim.ini
CommandWindow |
Details b
? New to MATLAB? Watch this Video, see Demos, or read Getting Started. X
Je>> |
Select a file to view details
< >
4\ Start OVR

2. Creating Matlab Script file (extension ”.m”)

In the Matlab Script code you can write comments after the % sign.
It is useful to start ”.m” file with two basic commands:

clear all;

close all;

The first deletes the contents of the Matlab workspace, ie. the currently used variables and
their values. Delete is very useful to avoid errors, e.g. the remained values of the variables
in the previous executing may cause confusion. The second command closes all of the
opened Matlab windows (e.g. diagrams) in one step.

Creating new COM server (other name ActiveX) is possible with the use of the Matlab
command “actxserver”:

vis=actxserver('Vissim. vissim')

For detailed information about a Matlab command use the Command Window and write the
“help” before the command e.g.

help actxserver

3. Vissim-COM methods

Object methods created via the Vissim-COM server are also accessible in the Command
Window. The list of the objects can be found in the Vissim-COM Interface Manual (PTV,
2012). We can access the method list of each object if we type the object’s name and the
,methods” command with a dot between them into the Command Window:

{Vissim-COM object name} .methods

The method above can only be used if the object written between the curly braces was
defined beforehand.

For example take a look at the following figure, which can be used for the object "vis"
(main object predefined in the previous chapter), and shows the list of all methods.

@ MNew to MATLAB? Watch this Video, see Demos, or read Getting Started. X
>> wis.methods
Methods for class COM.VISSIM wvissim:
AttValue SaveNetAs interfaces
BringToFront SetWindow invoke
DoEvents ShowMaximized load
Exit ShowMinimized move
GetWindow ShowNormal rropedit
ImportANM addproperty release
LoadLayout constructorargs save
LoadNet delete send
New deleteproperty set
SaveLayout ewvents
SaveNet get

Jx >>

3. Getting the method list of the object ''vis'' in Matlab

From the method list above the "invoke" is shown below as an example.

(@) New to MATLAB? Watch this Video, see Demos, or read Getting Started. ®

>» vis.invoke
New = woid New (handle)
LoadNet = woid LoadWNet (handle, Variant (Cptional))
SaveNet = woid SawvelNet (handle)
SaveNeth=s = void SavelNeths (handle, Variant (Optional))

ImportANM void ImportANM (handle, Variant (Cptiomnal))
LoadLayout = woid LoadLayout (handle, Variant (Cptional))
SavelLayout = wvoid Savelayout (handle, Variant (Cptional))

Exit = woid Exit (handle)

AttValue = Variant AttValue (handle, string)

ShowMaximized = void ShowMaximized (handle)

ShowMinimized = void ShowMinimized (handle)

ShowNormal = woid ShowNormal (handle)

BringToFront = wvoid BringToFront (handle)

GetWindow = [Variant (Pointer), Variant (Pointer), Variant (Pointer), Variant (Pointer)] GetWindow (handle)
SetWindow = void SetWindow (handle, Variant, Variant, Variant, Variant)
. DoEvents = wvoid DoEvents (handle)

4. The answer of Matlab Command Window to the "invoke'" command of a Vissim-
COM object

As can be seen, the list shows the available methods with the return value types and
arguments. The ,variant’ is a variable type which involves several types. "void" means that
the method does not have any return value.

Naturally, with this procedure the methods concerning any other Vissim-COM object can be
listed analogously.

4. Loading of Vissim network

In case of Vissim-COM programming you have to create the simulation network and its
elements on the graphic interface of the Vissim. You get a project file that has a .inp
extension, and a “Layout” file with .ini extension. Then, you can infuse them from COM
program with “Loadnet” and “lL.oadLayout” methods.

While using the methods, you can give the Vissim files with their direct access path that
shows the destination of the files with the letter of the driver and name of the containing
folders, ie.

vis.LoadNet('D:\Vissim Com Matlab\test.inp');
vis.LoadLayout('D:\Vissim_Com_ Matlab\vissim.ini'");

There is a possibility to give a relative access path, and that is the better solution. You only
have to use the “pwd” command from the Matlab, and it shows the access path of the
current folder (see figure below).

4 MATLAB 7.10.0 (R2010a)

File Edit Debug Parallel Desktop Window Help

hﬂ S . EE) :ﬁ L B o & ﬁy ﬂ @@Vissim_tom_l\-’latlab)

Shortcuts (2] How to Add (2] What's New

Current Folder

» | | <« Vissim_Com_Matlab @ MNew to MATLAB? Watch this Video, see Demes, or read Getting Started. X
Name >> pwd

|| test.ind
test.inp ans =

|| teszt.bgr

| teszt.jpg . i

& vissim.ini D:\Vissim Com Matlab

Details v fx > |

” command in Matlab command line

5. Using the “pwi
You can load the network with relative access path as follows:
access_path=pwd;
vis.LoadNet([access path "test.inp']);

vis.LoadLayout([access path "\vissim.inf]);

Using the relative access path is very useful if we wish to run the Vissim project on different
computers. You only have to copy the project folder to the current computer and open the
Matlab Script file from there. Thus, there is no need to refresh the whole path of the Vissim
project folder before running the code.

5. General simulation adjustments in Vissim-COM program

Heremafter we mtroduce the setting of object properties and attributes. For the sake of
clarity, we describe the simulation adjustments as a specific example, but of course the
method is the same with other objects as well.

For simulation settings first you have to define the “Simulation” object that can be found
under the main object in the hierarchy-model of Vissim-COM (see below). We can do that
via the previously defined main object called “vis™:

sim—vis.Simulation;

Vissim | (vis)

—| Simulation | (sim)

6. “Simulation” is below the main object “Vissim” in hierarchy (PTV, 2012); between
the round brackets you can read the name of the object used in the sample code

1. Object properties

Every Vissim-COM object has properties (Property). We can query the properties of the
objects with “get” method. In case of “Simulation” object they can be seen on the figure
below.

(CommandWindow
@ Mew to MATLAB? Watch this Video, see Demos, or read Getting Started. x
o> sim.get > ~
Comment: "'
Period: 3600
StartTime: '00:00:00"
Speed: 10 — query of all the properties
Resolution: 10
RandomSeed: 42
Breakat: 0
LeftSideTraffic: ' !

RunIndex: 0
2600 query of a given property

fx > | v
< >

ans =

7. Query of the “Simulation” object with “get” command

We can change the properties of the objects with the “set” method. Again, as an example
regarding the object “Simulation”, see the following figure.

Command Window
':1;\' Mew to MATLAB? Watch this Video, see Demos, or read Getting Started. 4
>> sim.set I ~

ans =
Comment: {}
Period: {}
StartTime: {} showing the changeable properties

Speed: {} ™

Resolution: {}
RandomSeed: {}
Breakat: {}
LeftSideTraffic: {}

RunIndex: {}

>>Sim.set('Period', 18001> changing a given property

>> sim.get ('Period')
ans = 1500 verifying of the altered property

fe>> | v
£ >

8. Set of the “Simulation” object with “set” command

Of course, editing properties of the objects happens the same in Matlab Script file as in the
command line.

An example to set the length of the simulation in Matlab Script file::
period_time=3600;
sim.set('Period', period time);

As another example, we mention the “Simulation Resolution” property. This represents how
many times the Vissim traffic model runs in a second during the simulation. We can change
it with the following code:

step time=3;

sim.set('Resolution’, step_time);

2. Object attributes

Objects have so-called attributes (“Attribute™) as well. To reach them we have to use the
“AttValue” method.

Syntax of the usage of the “AttValue” method in the case of readout (“get”) and for change
(“set”) is as follows:

sim.get('AttValue', {'attribute'});
sim.set('AttValue', {'attribute'}, { adjustable value});

Those attributes that can be written between the braces can be found in Vissim-COM
Interface Manual document (PTV, 2012) where you can find a detailed attribute table to
each objects. As an example below we can see the attribute table of “Simulation” object,
where “R” (readable) concerns the readability and “W” (writeable) concerns the writability
of the attribute.

R W Attribute Description

v ELAPSEDTIME Simulated time seconds since start of
simulation [s]

v ISRUNNING Simulation is running (True/False)

v+ LEFTSIDETRAFFIC 0 for right-side traffic , # 0 for left-side traffic

¥ v NUMRUNS Mumber of simulation runs for a multi-run
process

9. Part of attribute table of the “Simulation” object (PTV, 2012)

A part of these attributes covers the properties of the objects mentioned above, so they can

be used with “AttValue” method too, e.g. the following commands are completely
equivalent:

sim.set('Period', period_time); sim.set('AttValue', 'Period’, period_time);

The remaining part of the attributes can only be handled with “AttValue” method i.e.
sim.get('AttValue', 'ElapsedTime');
sim.set('AttValue', 'NumRuns', 10);

10

6. Running a simulation

Using Vissim there are three ways to run simulation:

e '"RunContinuous": continuous running,

e '"RunSingleStep": running step-by-step, ie. the time interval between steps will be
simulated according to the "Simulation Resolution" setting,

e '"RunMulti": multiple simulations in a row.

We point out the "RunSingleStep" method since this way makes easy to manipulate the
simulation "onlne", ie. during the simulaton run (for example changing the traffic
demands continuously).

"RunSingleStep" is suggested to use with "for" cycle. In the following example we run a
simulation which shows the elapsed simulation time at each step (,period time” and
,Step_time” variables are defined previously).

for i=0«(period_time* step time)
sim.RunSingleStep;
sim.get(AttValue', 'ElapsedTime');

end

While using "RunSingleStep", the "Simulation Speed" setting has no effect on the running
speed of the simulation. In this case, the simulation runs step by step according to the "for"
cycle, by running each ,time step” on the maximum speed possible. Therefore, using the
above method the simulation speed can be controlled by Matlab "pause" command (e.g. to
slow down the simulation for visual observation). In the following example, a 500 ms long
pause is inserted after each simulated time step:

for O (period time*step time)
sim.RunSingleStep;
pause(0.5);

end

"SaveSnapshot" and the "LoadSnapshot" methods are also worth mentioning, especially
when we would lke to run simulations several times from a given starting point, e.g. in
order to calibrate a simulation, or to set a ,warm start” simulation. By applying
"SaveSnapshot”, such a snapshot (with ,snp” file extension) is taken from the simulation
that contains the states (positions of vehicles, traffic lights, etc.) of all simulation objects and
conditions at the given moment. "LoadSnapshot" method can be used to load previously
taken snapshots. Here follows an example Matlab Script code to it:

sim.SaveSnapshot([folder path "\start.snp']);
sim.LoadSnapshot([folder path "\start.snp']);

11

7. Traffic generation

Vissim-COM make possible to dynamically change the traffic demands, which is very
useful in the following cases for example:
e to run several simulations with different traffic demands (possibly by "MultiRun"
method),
e to generate varying traffic demand by following the traffic changes of a day (during
the simulation run).

First of all, the "Net" object must be created, which is located below the main object in the
Vissim-COM hierarchy model (see figure below). This can be achieved through the main
object "vis" (already defined above):

vnet=vis.Net;

[Nt

| Vehiclelnputs || Vehiclelnput |

10. "VehicleInput" object in the Vissim-COM hierarchy (PTV, 2012)

Next the "VehicleInputs" collection has to be created which contains all vehicle nputs
("VehicleInput"), defined in Vissim GUI:

vehins=vnet. VehicleInputs;

Via the "Vehiclelnputs" collection any '"VehicleInput" object becomes accessible by using
the "GetVehicleInputByNumber" method, e.g.:

vehin 1=vehins. GetVehicleInputByNumber(1);

It must be mentioned that the numbers of the "Vehiclelnput" objects are unfortunately not
visible in Vissin GUI. Therefore, we need to look for them in the Vissim project file (with
"mp" file extensions). As the project file is practically a text file, it can be opened by any
text editor. By searching on the "Input", the "VehicleInput" objects can be found, and
identified based on their "Link" (on which they are situated).

El test - Notepad = =

File Edit Format View Help

INPUT 1
NAME "" LABEL ©.00 .00
LINK 1 Q 50.e08 COMPOSITION 1
TIME FROM ©.8 UNTIL 366@.8e

INPUT 2
NAME "" LABEL ©.00 .00
LINK 2 Q 156@.808 COMPOSITION 1
TIME FROM ©.8 UNTIL 366@.8

11. Extract from a Vissim project file ("'.inp'') opened with text editor

12

The given "VehicleInput" object is easy to edit with the "AttValie" method (by using the
attributes in figure below).

R W Attribute Description

v 1D Identifier number

¥ ¥ NAME Name

v LINK Link number

v+ TIMEFROM Time interval start [s]

¥ v TIMEUNTIL Time interval end [s]

v ¥ TRAFFICCOMPOSITION Traffic Composition number
v v VOLUME Volume [Veh/h]

12. The attribute table of the '"VehicleInput'" object (PTV, 2012)

An example for the modification of traflic volume attribute:
vehin 1.set('AttValue', "Volume', 600);

13

8. Traffic signal control, detectors

Traffic light control can be programmed via COM interface as well. However, it must be
noted that the previously mentioned Visvap module (flowcharts programming) or Signal
Controller API interface (on C++ language) are also applicable for traffic signal
programming,

The traffic signal control within Vissim-COM object model is shown in the figure below.

Vissim

B e a—

_‘ SignalControliers |—| SignalController |
T

Detectors H Detactor |

SignalGroups H SignalGroup |

| SignalHeads |—| SignalHead |

13. Components of traffic signal control within Vissim-COM object model (PTV, 2012)

Now, a simple example is provided to demonstrate traffic signal control via Vissim-COM.

A simple signalized intersection is given (shown in the figure below), where two one-way
roads (a main road and a side street) meet. There are two signal groups working in the
junction. By default, main road is operated with a constant green time signal. At the same
time, the signal group of the side road only gets green time when the loop detector is
activated. This is the so-called demand-actuated traffic signaling. The system checks the
loop detector’s availability in every 20 seconds. The demand-actuated stage has 20 seconds.

Side street

3082091 Linksand Connectors.

14. Simple intersection in Vissim with traffic demand actuated control

14

First we have to create the necessary elements in Vissim GUI:

e define signal control system in "Signal ControVEdit Controllers" menu, by choosing
"Fix time" controller (later it will be operated as traffic-responsive controller from
COM programe).

e create signal groups ("Signal Group") with a given signal plan (shown in the figure
below),

File Edit
BIHYC & [EE
E MName: |5\gna\program1 |

Offset: Switch point:
so oo N I O O

B--u My signal control 1

=11[8] Signal groups

rﬂ 1: Signal group 1
ru 2: Signal group 2,
E| 55 Intergreen matrices

E 1: Intergreen matrix

B E Signal programs

Signal group 2 | [l .n

15. Create "'Signal Group' in Vissim GUI with signal plan

e locate signal heads ("Signal Head") on the main and side roads
e locate demand detector on the side street ("Detector").

Then, the signal controller must be defined through Vissim-COM "SignalControllers"
collection:

scs=vnet.SignalControllers;
sc=scs.GetSignalControllerByNumber(1);

Create signal group objects through "SignalGroups" collection:
sgs=sc.SignalGroups;

sg 1=sgs.GetSignalGroupByN umber(1);

sg 2=sgs.GetSignalGroupByN umber(2);

Additionally, define loop detector object for traffic demand sensing:
dets=sc.Detectors;

det 1=dets.GetDetectorByN umber(1);

The signals of the signal groups can be controlled by "State" attribute of "SignalGroup"
object with the correct codes (see figure below), e.g. setting red signal for State 1:

sg_1.set('AttValue','State',1);

15

STATE 0 = Default (means: use the state of the
external controller), 1 = Red, 2 = Redamber,
3 =Green, 4 = Amber, 5 =0ff, 6 =
Undefined, 7 = Flashing Amber, 8 = Flashing
Red, 9 = Flashing Green, 10 = Flashing
Redgreen, 11 = Greenamber, 12 = Off red

16. "'State' attribute codes of ''SignalGroup" (PTV, 2012)

Status of the loop detector is requested also through the "AttValue" method by various
attribute e.g.:

det 1.get('AttValue', 'Detection’);
det 1.get('AttValue', 'Impulse’);
det 1.get('AttValue', 'Occupancy');
det 1.get('AttValue', 'Presence');

In addition to the above, the traffic-responsive logic is created by "rem" command of Matlab
(which gives back the remainder after a division of two numbers):

for =0 period time*step time)

sim.RunSingleStep;

if rem(i/step_time,20)==0 % verifying at every 20 seconds
demand=det 1.get(' AttValue','Presence’); % verifying detector occupancy: 0/1
if demand== % demand -> demand-actuated stage

sg 1.set('AttValue','State',1); % main road red (1)
sg 2.set("AttValue','State',3); % side street green (3)
else % no demand on loop -> main road is green
sg_1.set('AttValue','State',3);
sg 2.set('AttValue','State',1);
end
end

end

For the sake of clarity, in the example above we neglected the intergreen times between the
two phases and also we did not use transition signals (red-amber, amber). To create them
further programming is necessary.

16

9. Evaluation while running

One of the biggest advantages of the Vissim-COM programming is the possibilty of
evaluation while running. Two examples are shown from the numerous evaluation options:

e evaluation of data collection pomts through "DataCollection" objects,
e measurement of parameters of road sections through "Link" object.

Data Collection Points can be used effectively with Vissim GUI. They can be positioned
anywhere in the road network, furthermore they are suitable for measuring several
parameters in the given cross section (e.g. acceleration, number of vehicles, occupation).

In order to apply the data collection points via the Vissim-COM interface, first the
"Evaluation" object has to be made available as follows:

eval=vis. Evaluation;

We can reach the given data collection point through the "Data Collections” and by using
the "GetDataCollectionByNumber" method:

datapoints=vnet. DataCollections;
datapoint_1=datapoints. GetDataCollectionByNumber(1);

For the evaluation of the data collection points via Vissim-COM (even while running) the
"GetResult" method can be used with the appropriate parameters (see figure below).

Parameter Description

ACCELERATION Acceleration [m/s2] [ft/s2]. MIN, MAX, MEAN,
FREQUENCIES

LENGTH Vehicle length [m] [ft]. MIN, MAX, MEAN,
FREQUENCIES

MOTORTEMPERATURE Cooling water temperature [*C]. MIN, MAX,
MEAN, FREQUENCIES

NVEHICLES Number of vehicles. SUM

NPERSONS Number of people. MIN, MAX, MEAN, SUM,
FREQUENCIES

OCCUPANCYRATE Occupancy rate [%]. SUM

QUEUEDELTIME Total queue delay time [s]. MIN, MAX, MEAN,
SUM, FREQUENCIES

SPEED Speed [km/h] [mph]. MIN, MAX, MEAN,
FREQUENCIES

TACHO Total distance traveled in the network [m] [ft].

MIN, MAX, MEAN, FREQUENCIES

17. The "Data Collection Point" parameters which can be asked by the ""GetResult"
method (PTV, 2012)

The following code is an example for the “GetResult” method:
datapoint 1.GetResult('Speed’, 'Mean', 0);
where the elements in brackets are:

e parameter to ask,

17

function name,
Vehicle Class, where "0" value includes all vehicle classes.

The indispensable condition of measurement by data collection points is (even by using
Vissim-COM) that the option of ,Data collection” is flagged (and appropriately configured)
in the , Evaluation/Files” menu in the Vissim GUI.

In order to ask traffic parameters of a given road stretch, the road link has to be assigned
through collection "Links" by calling the "GetLinkByNumber" method:

links=vnet.Links;
link 1=links.GetLink ByNumber(1);

Then, the ,.GetSegmentResult” method can be used for the given "Link" object to ask the
traffic parameters (see figure below) even during simulation run.

Attribute Description
DENSITY Average density (current unit selection)

DELAY Average relative lost time [s/s]

NVEHICLES Mumber of vehicles (cumulative value of VOLUME).
VOLUME must be activated within the evaluation
configuration.

SPEED Average speed (current unit selection)
VOLUME Average volume [veh/h]

18. “Link” parameters which can be asked by ""GetSegmentResult" (PTV, 2012)

The following code is an example for asking the traffic volume on Link 1:
link 1.GetSegmentResult('Volume', 0, 0.0, 1, 0);

where the elements in the brackets are:

parameter to retrieve,

Vehicle Class,

given point of the road section (in meters), where the measurement starts (the
measurement ends at the end of the link); if it is 0.0 then we are measuring on the
whole link,

number of the lanes,

setting for cumulative evaluation: yes (1) or no (0).

There are two critical points of the appropriate measurement of road sections by
"GetSegmentResult":

Previously, the "Link Evaluation" option must be flagged and set appropriately in the
"Evaluation/Files" menu of Vissim GUI.

Previously, the "Link Evaluation" option must be flagged in Vissim GUI in the
context menu of the road sections to measure.

18

10. A complete sample code for Vissim-COM programming

A sample code for Vissim-COM programming (written in Matlab) is presented below based
on the examples introduced in this manual

%% Vissimn-COM programming - example code %%
- clear all;
- close all;
%% Create Vissim-COM server
vis=actxserver('VISSIM.vissim');
%% Loading the traffic network
access_path=pwd;
vis.LoadNet([access_path '\test.inp'l);
vis.LoadLayout([access_path '‘\vissim.ini']);
%% Simulation settings
sim=vis.Simulation;
period_time=3500;
sim.set('Period’, period_time);
step_time=3;
sim.set('Resolution’, step_time);
%% Define the network object
17 - vnet=vis.Net;
18 %% Setting the traffic demands of the network
19 - vehins=vnet.Vehiclelnputs;
20 - vehin_l=vehins.GetVehiclelnputByNumber(1l);
21 - vehin_l.set('AttValue', 'Volume', 1500); ¥ main road

SUDONO\A&WNH”"

B b b
R
O T R T |

22 - vehin_2=vehins.GetVehiclelnputByNumber(2);

23 - vehin_2.set('AttValue', 'Volume', 100); ¥ side street
24 %% The objects of the traffic signal control

25 - scs=vnet.SignalControllers;

26 - sc=scs.GetSignalControllerByNumber(l);

27 sgs=sc.SignalGroups;

sg_l=sgs.CGetSignalGroupByNumber(l);
sg_2=sgs.GetSignalGroupByNumber(2);
dets=sc.Detectors;
det_l=dets.CetDetectorByNumber(l);
%% Access to Evaluation object
eval=vis.Evaluation;
%% Access to DataCollectionPoint object
datapoints=vnet.DataCollections;
datapoint_l=datapoints.CetDatalollectionByNumber(l);
%% Access to Link object
links=vnet.Links;
1ink_l=1inks.GCetLinkByNumber(1l);
%% Running the simulation

[for i=0:(period_tine*step_time)

GREBEBYUBLREUNEEEY

- sim.RunSingleStep;

= if rem(i/step_time,20)==0 % verifying at every 20 seconds
44 - igeny=det_1.get(AttValue', 'Presence'); %get detector occupancy:0/1
45 - if igeny==1 % demand -> demand-actuated stage
46 - sg_1l.set('AttValue','State’,1); ¥ main road red (1)
47 - sg_2.set('AttValue’,'State’,3); ¥ side street green (3)
48 - else % no demand on loop -> main road is green
49 - sg_l.set('AttValue','State',3);
50 - sg_2.set('AttValue', 'State’,1);
calie end
D= end
53 = datapoint_1.GetResult('Speed’,'Mean’',0) ¥get avg speed from DataPoint 1
54 - Tink_1.GetSegnentResult('Volume',0,0.0,1,0) ¥get traffic flow on Link 1
55 - “end
56 %% Delete Vissim-COM server (also closes the Vissim GUI)
57 - delete(vis);

19

11. Bibliography
Box D. Essential COM, Addison-Wesley, ISBN 0-201-63446-5, 1998

PTV, Vissim-COM Interface Manual 5.4, PTV Planung Transport Verkehr AG, Germany,
2012

Wiedemann R. Simulation des StraBenverkehrsflusses Schriftenreihe des Instituts fiir
Verkehrswesen der Universitit Karlsruhe, Heft 8, 1974

20

