
SUMO Veins tutorial

Stahorszki, Peter Bence

2020 - May

Contents

1 About Veins . 1
2 Setup and first steps . 3

2.1 Instant Veins . 3
2.2 Windows . 3
2.3 Make sure SUMO is working 4
2.4 Final step: Run the Veins demo scenario 5
2.5 Linux . 7

3 Example project . 13
3.1 Explaining Cookiecutter project 13

1

1 About Veins

Veins, the Open Source vehicular network simulation framework, ships as a suite
of simulation models for vehicular networking. These models are executed by an
event-based network simulator (OMNeT++) while interacting with a road traffic
simulator (SUMO). Other components of Veins take care of setting up, running,
and monitoring the simulation.

This consitutes a simulation framework. What this means is that Veins is meant
to serve as the basis for writing application-specific simulation code. While it can
be used unmodified, with only a few parameters tweaked for a specific use case, it
is designed to serve as an execution environment for user written code. Typically,
this user written code will be an application that is to be evaluated by means of a
simulation. The framework takes care of the rest: modeling lower protocol layers
and node mobility, taking care of setting up the simulation, ensuring its proper
execution, and collecting results during and after the simulation.

Veins contains a large number of simulation models that are applicable to vehicular
network simulation in general. Not all of them are needed for every simulation –
and, in fact, for some of them it only makes sense to instantiate at most one in
any given simulation. The simulation models of Veins serve as a toolbox: much of
what is needed to build a comprehensive, highly detailed simulation of a vehicular
network is already there. Still, a researcher assembling a simulation is expected to
know which of the available models to use for which job. To give a trivial example,
one would not want to use a path loss model designed for cities to simulate a freeway
scenario.

Veins is an Open Source vehicular network simulation framework. What this
means is that it (and all of its simulation models) are freely available for download,
for study, and for use. Nothing about its operation is (or needs to be) kept secret.
Any simulation performed with Veins can be shared with interested colleagues – not
just the results, but the complete tool chain required for an interested colleague to
reproduce the same results, to verify how they were derived, and to build upon the
research performed.

Road traffic simulation is performed by SUMO, which is well-established in the
domain of traffic engineering. Network simulation is performed by OMNeT++ along
with the physical layer modelling toolkit MiXiM, which makes it possible to employ

1

accurate models for radio interference, as well as shadowing by static and moving
obstacles.

Both simulators are bi-directionally coupled and simulations are performed online.
This way, the influence of vehicular networks on road traffic can be modeled and
complex interactions between both domains examined.

Domain specific models for vehicular networking build on this basis to provide a
comprehensive framework that is still easy to learn and use.

For mor information, refer to the website.

2

http://Veins.car2x.org/

2 Setup and first steps

2.1 Instant Veins

If you just want to try out Veins and don’t want to spend the time to configure
it on your machine, there is a preconfigured Linux instance which comes with Veins
installed, all you have to do is download it, import it in Oracle VM VirtualBox, and
start the machine. Download instant Veins and Oracle VM VirtualBox. I advice an
older build, like 5.2.32, that is the recommended on the Veins website, and I could
not get it to work with newer (6.1) release.

I recommend downloading a previous release of Instant Veins, 4.7.1, because
I had problems with version 5.0.1, it broke everytime when I tried to move the
VirtualBox window, or tried to change its resolution, and also, 4.7.1 was overall
faster then 5.0.1.

After you downloaded Veins and installed VirtualBox, import and start the ma-
chine, and continue with the section about running Veins on Linux.

2.2 Windows

This tutorial will asume that you put your Veins related files intoC:/Users/user/src
folder, where user is your Windows username. Of course you can put your files in
other locations, just change the paths given in this tutorial accordingly.

2.2.1 Download and install SUMO

Download the SUMO binaries (the zip file) and unpack them as

C:/Users/user/src/sumo-1.2.0

This should give you an executable

C:/Users/user/src/sumo-1.2.0/bin/sumo.exe

I tried SUMO versions 1.2.0 and 1.6.0, both worked flawlessly.

2.2.2 Download and build OMNeT++ 5

Download OMNeT++ for Windows and unpack it as

C:/Users/user/src/omnetpp-5.5.1

After extracted there should be a script:

3

http://veins.car2x.org/download/
https://www.virtualbox.org/wiki/Download_Old_Builds_5_2
https://sourceforge.net/projects/sumo/files/sumo/
https://omnetpp.org/download/

C:/Users/user/src/omnetpp-5.5.1/mingwenv.cmd

After opening this script, we can start building OMNeT++ 5 by typing ./con-
figure in the opened console window. After the first command finished, type the
make command. Afther it finished, you can use the omnetpp command to launch
the OMNeT++ 5 IDE.

2.2.3 Download and build Veins

Download Veins and unpack it as:

C:/Users/user/src/veins-5.0

Import the project into your OMNeT++ IDE workspace by clicking File >
Import > General: Existing Projects into Workspace and selecting the
directory you unpacked the module framework to.

Build the newly imported project by choosing Project > Build All in the OM-
NeT++ 5 IDE. After the project built, you are ready to run your first IVC eval-
uations, but to ease debugging, the next step will ensure that SUMO works as it
should.

2.3 Make sure SUMO is working

Add SUMO folder to the executables path, so you don’t have to type the full path
every time you want to run SUMO:

export PATH=$PATH:/c/Users/user/src/sumo-1.2.0/bin

This will only affect the mingw commandline window. In order to add sumo to your
windows command line executable path, open Environment variables from the
Start menu, and add the above mentioned path to the Path variable.

In the OMNeT++ MinGW command line window, you should be able to have
SUMO simulate an example scenario by changing the current directory to:

cd C:/Users/user/src/veins-5.0/examples/veins/

and running:

sumo -c erlangen.sumo.cfg

to start SUMO. You should see a line saying "Loading configuration... done.",
then - after a short while - with no further output be returned to the command line.

4

http://veins.car2x.org/download/

Figure 1: Windows edit environmental variables

To get an impression of what the example scenario looks like, you can also run
it using sumo-gui.exe, but this is not required for Veins to work.

2.4 Final step: Run the Veins demo scenario

To save you the trouble of manually running SUMO prior to every OMNeT++
simulation, the Veins module framework comes with a small python script to do that
for you. In the OMNeT++ MinGW command line window, move into the folder:

cd C:/Users/user/src/veins-5.0

and start it by running:

sumo-launchd.py -vv -c sumo.exe

This script will proxy TCP connections between OMNeT++ and SUMO, starting
a new copy of the SUMO simulation for every OMNeT++ simulation connecting.
The script will will print Listening on port 9999 and wait for the simulation to
start. Leave this window open and switch back to the OMNeT++ 5 IDE.

In the OMNeT++ 5 IDE, simulate the Veins demo scenario by right-clicking on
veins-5.0/examples/veins/omnetpp.ini and choosingRun As > OMNeT++
simulation. Don’t forget to allow access to SUMO through any personal firewall
you might run. Similar to the last example, this should create and start a launch
configuration. You can later re-launch this configuration by clicking the green Run
button in the OMNeT++ 5 IDE.

5

If everything worked as intended this will give you a working simulation scenario
using OMNeT++ and SUMO running in parallel to simulate a stream of vehicles
that gets interrupted by an accident.

Figure 2: Running simulation

6

If you ran a debug build of the simulation (e.g., by choosing Debug as instead
of Run as when launching the simulation by right-clicking on omnetpp.ini and
acknowledging the prompt to build the simulation to debug mode), you will see a
wealth of debug output in the log window. Note, however, that a simulation running
in debug mode executes at lower speed.

Note: the simulation can run into problems, if you have multiple versions of
Python installed, so try running the sumo-launchd.py with a specific version, or
delete one of the Pyton version from your computer. I’m using Python 3.7.4 in
this tutorial.

2.5 Linux

In this section I will show you how to install OMNeT++, Veins and SUMO on
Ubuntu 20.04.

2.5.1 Installing OMNeT++

Although the OMNeT install guide recommends Ubuntu 16.04 or 18.04, I could
install it on 20.04 without any issues, I just had to make a few adjustments.

I had to expand the repository sources list. To do this, open the sources file:

sudo nano /etc/apt/sources.list

And add the following repositories at the end of the file. After you are done with
the installation, you can delete these.

Ubuntu Trusty Repos
deb http://hu.archive.ubuntu.com/ubuntu/ trusty main restricted ...

universe multiverse
deb-src http://hu.archive.ubuntu.com/ubuntu/ trusty main restricted ...

universe multiverse

Ubuntu Xenial Repos
deb http://hu.archive.ubuntu.com/ubuntu/ xenial main restricted ...

universe multiverse
deb-src http://hu.archive.ubuntu.com/ubuntu/ xenial main restricted ...

universe multiverse

Ubuntu Bionic Repos
deb http://hu.archive.ubuntu.com/ubuntu/ bionic main restricted ...

universe multiverse

7

deb-src http://hu.archive.ubuntu.com/ubuntu/ bionic main restricted ...

universe multiverse

After this run:

$ sudo apt-get update
$ sudo apt-get upgrade

When thats finished, install the packages:

$ sudo apt-get install build-essential gcc g++ bison flex perl
python python3 qt5-default libqt5opengl5-dev tcl-dev tk-dev ...

libxml2-dev zlib1g-dev default-jre doxygen graphviz ...

libwebkitgtk-3.0-0

To add Qtenv with 3D visualization support, follow these steps:

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update
install osgearth development package (and OpenSceneGraph, too)
$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

To enable the optional parallel simulation support you will need to install the
MPI packages:

$ sudo apt-get install openmpi-bin libopenmpi-dev

The optional Pcap library allows simulation models to capture and transmit
network packets bypassing the operating system’s protocol stack. It is not used
directly by OMNeT++, but models may need it to support network emulation.

$ sudo apt-get install libpcap-dev

Now download OMNeT++. Move it to a directory, for example:

/home/<you>/veins_framework/src/

It is important, to move the following components - or at least Veins - in a folder
called .../../src, because when we will want to add the Veins project to OMNeT++,
it will only be recognized az a project, if it is in a src directory. Then extract it:

$ tar xvfz omnetpp-5.6.1-src.tgz

OMNeT++ needs its bin/ directory to be in the path. To add bin/ to PATH

8

https://omnetpp.org/download/

temporarily (in the current shell only), change into the OMNeT++ directory and
source the setenv script:

$ cd omnetpp-5.6.1
$. setenv

Add OMNeT++ to your environment variables with a text editor:

$ nano ¬/.bashrc

export PATH=$HOME/veins_framework/src/omnetpp-5.6.1/bin:$PATH

In the top-level OMNeT++ directory, type:

$./configure

The configure script detects installed software and configuration of your system.
It writes the results into the Makefile.inc file, which will be read by the makefiles
during the build process.

When ./configure has finished, you can compile OMNeT++. Type in the termi-
nal:

$ make

Finally, add the OMNeT++ libs to the libraries path, this is needed in order to
be able to build the Veins project we will import in a later step:

$ echo $LD_LIBRARY_PATH

If nothing is displayed, add a default path value, and append our OMNeT++
libraries:

$ LD_LIBRARY_PATH=/usr/local/lib
$ LD_LIBRARY_PATH= ...

$LD_LIBRARY_PATH:/home/<you>/veins_framework/src/omnetpp-5.6.1/lib/

After finished with everything, you should have yourself a working OMNeT++
instance. Type omnetpp in your terminal window, and start the IDE, to verify the
installation.

Note: would you run into any trouble, refer to the official installation guide, for
further assistance.

9

https://doc.omnetpp.org/omnetpp/InstallGuide.pdf

2.5.2 Installing SUMO

Install the required tools and libraries:

$ sudo apt-get install cmake python g++ libxerces-c-dev ...

libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev swig

Move to the directory you chose for your veins framework and get the source
code (you may need to install git for this):

$ git clone --recursive https://github.com/eclipse/sumo

Add SUMO_HOME path:

$ export SUMO_HOME="$PWD/sumo"

Build SUMO:

$ mkdir sumo/build/cmake-build && cd sumo/build/cmake-build
$ cmake ../..
$ make -j$(nproc)

Finally, add the SUMO bin folder to the executables path, this way you don’t
have to type in the full path to run it:

$ nano ¬/.bashrc

export PATH=$HOME/veins_framework/src/sumo/bin:$PATH

2.5.3 Download and build Veins

Download Veins and unpack it as:

/home/<you>/veins_framework/src/veins-5.0

Import the project into your OMNeT++ IDE workspace by clicking File >
Import > General: Existing Projects into Workspace and selecting the
directory you unpacked the module framework to.

Build the newly imported project by choosing Project > Build All in the OM-
NeT++ 5 IDE. After the project built, you are ready to run your first IVC eval-
uations, but to ease debugging, the next step will ensure that SUMO works as it
should.

10

http://veins.car2x.org/download/

2.5.4 Finally: run the Veins demo scenario

To save you the trouble of manually running SUMO prior to every OMNeT++
simulation, the Veins module framework comes with a small python script to do that
for you. In the OMNeT++ MinGW command line window, move into the folder:

cd /home/<you>/veins_framework/src/veins-5.0

and start it by running:

sumo-launchd.py -vv -c sumo

This script will proxy TCP connections between OMNeT++ and SUMO, starting
a new copy of the SUMO simulation for every OMNeT++ simulation connecting.
The script will will print Listening on port 9999 and wait for the simulation to
start. Leave this window open and switch back to the OMNeT++ 5 IDE.

In the OMNeT++ 5 IDE, simulate the Veins demo scenario by right-clicking on
veins-5.0/examples/veins/omnetpp.ini and choosingRun As > OMNeT++
simulation. Don’t forget to allow access to SUMO through any personal firewall
you might run. Similar to the last example, this should create and start a launch
configuration. You can later re-launch this configuration by clicking the green Run
button in the OMNeT++ 5 IDE.

If everything worked as intended this will give you a working simulation scenario
using OMNeT++ and SUMO running in parallel to simulate a stream of vehicles
that gets interrupted by an accident.

If you ran a debug build of the simulation (e.g., by choosing Debug as instead
of Run as when launching the simulation by right-clicking on omnetpp.ini and
acknowledging the prompt to build the simulation to debug mode), you will see a
wealth of debug output in the log window. Note, however, that a simulation running
in debug mode executes at lower speed.

Note: the simulation can run into problems, if you have multiple versions of
Python installed, so try running the sumo-launchd.py with a specific version, or
delete one of the Pyton version from your computer. I’m using Python 3.7.4 in
this tutorial.

11

Figure 3: Running simulation

12

3 Example project

The recommended way to proceed is to simply modify the tutorial simulation to
get started with using Veins, but you might want to create a dedicated OMNeT++
project. The easiest way is using cookiecutter-veins-project, which is a Cookiecutter
template. First we need to install Cookiecutter. Open a command line window, and
type:

pip install --user cookiecutter

After the installation is done, make sure that the Python scripst are executable
from command line. Add %APPDATA%/Python/Python3x/Scripts to the
environment variables, where Python3x should correspond to your installed Python
version. Then execute:

cookiecutter gh:veins/cookiecutter-veins-project

This will download the Cookiecutter template and ask you some questions, e.g.,
the project name and which additional module libraries you want the project to
use (for which you can safetly select the default answer by pressing the Enter key).
It will then download the current version of Veins and create a new OMNeT++
project that is using Veins.

3.1 Explaining Cookiecutter project

In the next part of this tutorial I will explain to you the inner workings of the
Cookiecutter VEINS project, to help you get started on customizing and building
your own projects. You will get to know how to implement sending messages to
vehicles in your simulation based on specific conditions and how to handle these
messages.

Note: this tutorial assumes that you have some knowledge of SUMO and TraCI,
and also you familiarized yourself with the basics of OMNeT++.

3.1.1 Initial steps, introduction to simulation

This demo simulation shows a traffic situation, where one vehicle suffers and
accident and stays in that place for a given amount of time. When the accident
happens, the vehicle sends out a message to the road side unit (RSU) and the other
vehicles. The RSU repeats the message with a bit of delay, so vehicles which arrived
after the first wave of messages would know about the accident too. When a vehicles

13

https://github.com/veins/cookiecutter-veins-project
https://github.com/cookiecutter/cookiecutter
https://sumo.dlr.de/docs/Tutorials.html
https://sumo.dlr.de/docs/Tutorials.html#traci_tutorials
https://omnetpp.org/documentation/

receive the message, it gets a chance to change routes, after that they also replay
the received message.

3.1.2 Configuration

The first step we take is open omnetpp.ini in the IDE. Here we will see an over-
whelming amount of parameters, but we will only focus on the essentials.

//...
//the location of the project entry point file
ned-path = .

//...
//the location of the simulation scenarion NED file
network = RSUExampleScenario

//...
##
Simulation parameters
##
//allow debug on errors, when error occurs, switches to debug mode and jump

to the error location↪→

debug-on-errors = true
//duration of the simulation
sim-time-limit = 200s

//...
//size of the network the nodes takes place in
*.playgroundSizeX = 2500m
*.playgroundSizeY = 2500m
*.playgroundSizeZ = 50m

//...
##
TraCIScenarioManager parameters
##
//location of the sumo launch file for TraCIScenarioManagerLaunchd
*.manager.launchConfig = xmldoc("erlangen.launchd.xml")

//...
##
RSU SETTINGS
#
#
##
//position of the RSU
*.rsu[0].mobility.x = 2000
*.rsu[0].mobility.y = 2000
*.rsu[0].mobility.z = 3
//application layer for RSU
.rsu[].applType = "TraCIDemoRSU11p"

14

//...
##
App Layer
##
//application layer for vehicles
.node[].applType = "TraCIDemo11p"

//...
##
Mobility
##
//starting position, number of accidents, time and duration of accident
.node[].veinsmobility.x = 0
.node[].veinsmobility.y = 0
.node[].veinsmobility.z = 0
.node[].veinsmobility.setHostSpeed = false
*.node[*0].veinsmobility.accidentCount = 1
*.node[*0].veinsmobility.accidentStart = 73s
*.node[*0].veinsmobility.accidentDuration = 50s

//...

3.1.3 Nodes

The participants in the V2x communications are represented as nodes. We use
two types of NED nodes, the car and the RSU.

veins.nodes.Car: in this NED file we define the vehicle in the simulation. We
set up a mobility type for the vehicle, which basically allows us to control the vehicle,
and get informations from it through TraCI. The type of network and application
layer defines the way the cars will communicate and act in the simulation.

//...
module Car
{

parameters:
string applType; //type of the application layer
string nicType = default("Nic80211p"); //type of network interface

card↪→

string veinsmobilityType =
default("org.car2x.veins.modules.mobility.traci.TraCIMobility");
//type of the mobility module

↪→

↪→

gates:
input veinsradioIn; //gate for sendDirect

submodules:
appl: <applType> like org.car2x.veins.base.modules.IBaseApplLayer {

parameters:
@display("p=60,50");

15

}

nic: <nicType> like org.car2x.veins.modules.nic.INic80211p {
parameters:

@display("p=60,166");
}

veinsmobility: <veinsmobilityType> like
org.car2x.veins.base.modules.IMobility {↪→

parameters:
@display("p=130,172;i=block/cogwheel");

}

connections:
nic.upperLayerOut --> appl.lowerLayerIn;
nic.upperLayerIn <-- appl.lowerLayerOut;
nic.upperControlOut --> appl.lowerControlIn;
nic.upperControlIn <-- appl.lowerControlOut;

veinsradioIn --> nic.radioIn;

}

veins.nodes.RSU: the RSU node is almost exactly the same as the car module,
with the exception that it does not define a separate mobility type.

3.1.4 Backround logic, messages

Mobility

veins.modules.mobility.traci.TraCIMobility: in this file the most important
function we need to understand is handleSelfMessage(cMessage* msg), and the
usage of scheduleAt(simtime_t t, cMessage *msg) function. The others are
mostly utility functions, that we would not want to change, for now at least.

//...
void TraCIMobility::handleSelfMsg(cMessage* msg)
{

if (msg == startAccidentMsg) {
getVehicleCommandInterface()->setSpeed(0);
simtime_t accidentDuration = par("accidentDuration");
scheduleAt(simTime() + accidentDuration, stopAccidentMsg);
accidentCount--;

}
else if (msg == stopAccidentMsg) {

getVehicleCommandInterface()->setSpeed(-1);

16

if (accidentCount > 0) {
simtime_t accidentInterval = par("accidentInterval");
scheduleAt(simTime() + accidentInterval, startAccidentMsg);

}
}

}
//...

With the scheduleAt function we can schedule the sending of a message. After
the function was called, and the specified time passed, the handleSelfMsg function
gets the message, and starts to process it. In this example it has two paths of execu-
tion, if the received message is startAccidentMsg or if it is stopAccidentMsg.
In the first case, it sets the speed of the vehicle to 0, schedules a stopAccidentMsg
message. When the stopAccidentMsg is received, the vehicle is started again, and
the handler schedules another accident. The first message in this example originates
from the initialize function.

Of course we could implement any kind of elaborate logic here, within the capa-
bilities of the TraCI C++ interface, but for simplicity, we leave it as is.

Network layer

veins.modules.nic.Nic80211p: defines the Nic80211p network interface. We
will not modify these parts of the example for now.

Application layer

veins.modules.application.ieee80211p.DemoBaseApplLayer: both appli-
cation layer implementations in this example extend the DemoBaseApplLayer
class. The functions here we are intrested in are the handleLowerMsg(cMessage*
msg), sendDown(cMessage* msg) and the sendDelayedDown(cMessage*
msg). Messeges are sent through the sendDown and sendDelayedDown func-
tions. The received messages arrive in the handleLowerMsg function, where based
on their types, are handed down to different functions. There are three types of V2x
messages used in this example, BSM - Basic Safety Message, WSA - Wave
Service Announcement and WSM - Wave Short Message, and each have
their own handler function, onBSM, onWSA and onWSM.

//...
void DemoBaseApplLayer::handleLowerMsg(cMessage* msg)
{

17

BaseFrame1609_4* wsm = dynamic_cast<BaseFrame1609_4*>(msg);
ASSERT(wsm);

if (DemoSafetyMessage* bsm = dynamic_cast<DemoSafetyMessage*>(wsm)) {
receivedBSMs++;
onBSM(bsm);

}
else if (DemoServiceAdvertisment* wsa =

dynamic_cast<DemoServiceAdvertisment*>(wsm)) {↪→

receivedWSAs++;
onWSA(wsa);

}
else {

receivedWSMs++;
onWSM(wsm);

}

delete (msg);
}

//...

veins.modules.mobility.traci.TraCIDemo11p: this is the application layer,
which is shared between all of the car nodes. Its parent class is DemoBaseAp-
plLayer. The onWSM and onWSA functions are implemented here, the onWSM
is the more interesting for us now. Once the vehicle receives the message, it will
change route if possible, and repeat the received message after some time.
//...

void TraCIDemo11p::onWSM(BaseFrame1609_4* frame)
{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

findHost()->getDisplayString().setTagArg("i", 1, "green");

if (mobility->getRoadId()[0] != ':')
traciVehicle->changeRoute(wsm->getDemoData(), 9999);↪→

if (!sentMessage) {
sentMessage = true;
//repeat the received traffic update once in 2 seconds plus some

random delay↪→

wsm->setSenderAddress(myId);
wsm->setSerial(3);
scheduleAt(simTime() + 2 + uniform(0.01, 0.2), wsm->dup());

}
}

//...

18

veins.modules.mobility.traci.TraCIDemoRSU11p: this is the application
layer for the RSU node, which extends from the same parent class asTraCIDemo11p.
There is less functions implemented here, we get the same onWSM function, just
with a different implementation. When the RSU gets the message, and replays it
with a few seconds delay.

//...
void TraCIDemoRSU11p::onWSM(BaseFrame1609_4* frame)
{

TraCIDemo11pMessage* wsm = check_and_cast<TraCIDemo11pMessage*>(frame);

//this rsu repeats the received traffic update in 2 seconds plus some
random delay↪→

sendDelayedDown(wsm->dup(), 2 + uniform(0.01, 0.2));
}

19

3.1.5 Running the example

I advise you to make some changes to the simulation, because it has way too many
vehicles to be able to easily comprehend, what is happening on the screen.

I changed the flow in erlangen.rou.xml in the SUMO files, so it spawns less
vehicles, with bigger timegaps between:

//...
<flow id="flow0" type="vtype0" route="route0" begin="0" ...

period="20" number="5"/>
//...

When you start the simulation, you will see some cars starting a journey, when
suddenly the first one stops, and sends out messages to the RSU, and the other
vehicles.

Figure 4: Messages sent after accident

20

After the participants received the message, they replay it, some vehicles will
change route if it can. If you run the simulation in debug mode, and place break-
points in the functions I mentioned above, you can follow the flow of the messages.

21

	About Veins
	Setup and first steps
	Instant Veins
	Windows
	Make sure SUMO is working
	Final step: Run the Veins demo scenario
	Linux

	Example project
	Explaining Cookiecutter project

