Assessment of travel behaviour related to new mobility services

AUTHOR: JULIO CESAR L. LIZÁRRAGA SUPERVISOR: DOMOKOS ESZTERGÁR-KISS

New mobility services: E-micromobility

 E-micromobility = small electrically powered vehicles (e.g., e-scooters and ebikes)

E-micromobility prospective alternative

Potential

complements public transportation and reduce car usage

E-micromobility in a competetive situation

- i. Space-efficient
- ii. Convenient
- iii. Environmentally friendly
- iv. Suitable for short trips
- i. Flexible = fills gap individual and public transport
- ii. Expand an extended feeder service

Methodology

Quantitative Survey

Purpose: evaluate user needs and requirements regarding emicromobility

SP Experiment

Purpose: reveal individual's utility for e-micromobility when compared with other transport modes.

- Create hypothetical choices in a questionnaire format
 - Hypothetical trip
 - Define alternatives and attributes (with their respective levels)
 - Reduce choice situations
 (fractional factorial)

Copenhagen Munich Barcelona Tel Aviv Stockholm

Creates questionnaires

Carry out survey and data results

Model analysis

Methodology -

SP Experiment

Labeled Design experiment

- Trip distance: 4km (avoid natural exclusion of alternatives)
- Transport modes (4): Car, PT, <u>E-</u> micromobility, Bike-sharing
- Attribute types (2): Cost and Time
- Attribute levels (3) standard level of attributes over / below levels (+/- 20%)

 $L^{MA} = 3^{4*2} = 6561$ (possible choice situations)

Respondents were assigned a number (1-9) Assigned number = question to be answered from all 9 blocks

Answer Survey!

Explore e-micromobility travel behaviour Methodology

SP Experiment

				me Attribute			
User Cases	Alternatives	Below (-20%)	Standard	Over (+20%)	Below (-20%)	Standard	Over (+20%)
Copenhagen	Car	18	22.5	27	10	12	15
(DKK)	Public transport	12	15	18	18	20	24
	E-micromobility	24	30	36	12	15	18
	Bike-sharing	9	12	15	12	15	18
Munich	Car	1.2	1.5	1.8	10	12	15
(EUR)	Public transport	0.8	1	1.2	18	20	24
	E-micromobility	1.6	2	2.4	12	15	18
	Bike-sharing	0.6	0.8	1	12	15	18
Barcelona	Car	1.2	1.5	1.8	10	12	15
(EUR)	Public transport	0.8	1	1.2	18	20	24
	E-micromobility	1.6	2	2.4	12	15	18
	Bike-sharing	0.6	0.8	1	12	15	18
Tel Aviv	Car	4.62	5.775	6.93	10	12	15
(ILS)	Public transport	3.08	3.85	4.62	18	20	24
	E-micromobility	6.16	7.7	9.24	12	15	18
	Bike-sharing	2.31	3.08	3.85	12	15	18
Stockholm	Car	28	35	42	10	12	15
(SEK)	Public transport	24	30	36	18	20	24
	E-micromobility	24	30	36	12	15	18
	Bike-sharing	6	8	10	12	15	18

Explore e-micromobility travel behaviour Methodology

SP Experiment

Multinomial Logit Model MNL

Logit addressing probability condition =>

$$V_{i,t} = ASC_i + \gamma_{i,k}S_{k,t} + \sum_m \beta_{i,m}X_{i,m}$$

Systematic function of alterantive i

Sum of all alternative's systematic functions

*** Weighted sum of attribute levels Xm of i

*** utility associated with the respondent 's characteristics Sk

•
$$V_{emic} = \underline{ASC_{emic}} + \underline{\gamma_{emic,income}} * inc + \beta_{fare} X_{emic,fare} + \beta_{time} X_{emic,tim}$$

respondent's estimated average preference to alterantive, i appended coefficients that defines direction (+ or -) and importance of (magnitude) of the attributes and respondent's characteristics.

Explore e-micromobility travel behaviour Methodology

SP Experiment

Model Results using Biogeme

											V-1
1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 4 15 5 6 7 8 9 10 11 12 13 4 15 5 6 7 7 8 9 9 10 11 12 13 4 15 5 6 7 7 8 9 9 10 11 12 13 4 15 5 6 7 7 8 9 9 10 11 12 23 24 25 26 27 28 9 9 20 10 11 12 22 24 25 5 24 25 26 27 30 31 4 31 34 33 34 35 35 34 35 35 34 34 35 35 34 34 35 35 34 34 35 35 34 34 35 35 36 36 37 37 38 39 30 31 31 32 31 34 32 35 34 34 35 35 36 37 37 38 39 30 31 32 33 34 35 35 36 37 37 38 39 30 31 32 33 34 35 35 36 37 37 38 39 30 31 32 33 34 35 35 36 37 37 38 39 30 31 32 33 34 35 35 37 37 38 39 30 31 32 3 34 33 34 35 35 35 34 35 35 37 37 38 39 31 34 31 35 35 37 38 39 31 32 33 34 35 35 35 37 37 38 37 37 38 39 31 34 32 35 34 34 35 35 34 34 35 35 35 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FARE_CAR 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 15 30 12 12 24 9 12 24 9 12 24 9 12 24 9 12 24 9 12 24 9 15 15 18 15 15	FARE_PT FARE_ENIC 24 18 18 3 24 18 18 2 24 18 18 2 24 18 18 2 24 18 18 2 24 18 18 2 24 18 18 2 24 18 18 2 24 18 18 4 24 18 18 4 24 18 18 4 24 18 18 4 18 15 18 2 18 15 18 2 18 15 18 4 18 15 18 4 18 15 3 18 18 15 2 2 24 15 15 0 24 15 15 0	FARE_BIKE	TIME_CAR	TIME_PT TIME_EMIC	TIME_BIKE	chosen	2 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 30	<pre>[Ucta] // Name ASC_CAR GAMMA_INCOME_CAF ASC_PT GAMMA_INCOME_PT ASC_EMIC GAMMA_INCOME_BIH BETA_FARE BETA_TIME [Utilities] // Id Name 1 CAR 2 PT 3 EMIC 4 BIKE</pre>	Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 355 366 37 38 39 400 41 42 43 44 45 45 46 47 48 49 9 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 15 15 6 24 15 15 4 24 15 15 4 24 15 15 4 24 15 15 4 18 18 15 3 18 18 15 2 18 18 15 2 18 18 15 2 18 18 15 2 18 18 15 4 18 18 15 4 18 18 15 4 18 18 15 4 18 12 4 4 18 12 2 18 18 12 2 18 12 18 12 2 18 12 2								
	(1) "C	lean	" data	from	resp	onses					

Results

Quantitative survey approach

Quantitative survey approach

Results

Quantitative survey approach

How would it be combined?

Effects on the city structure and transportation network by location

Results

Quantitative survey approach

Effects on the city structure and transportation network by location

SP Estimated parameters

	Copenhagen		Munich		Barcelona		Tel Aviv		Stockholm		
Coefficient	values	t-value	values	t-value	values	t-value	values	t-value	values	t-value	
ASC_BIKE	1.78 ●	3.86	2.31 ●	6.13	1.21	4.12	0.77	2.68	0.37	1.07	
ASC_CAR	fixed										
ASC_EMIC	1.03	2.03	1.21	2.53	2.25	7.57	1.13	3.80	0.44	1.46	
ASC_PT	1.33	2.58	2.32	5.83	2.06	6.40	1.65	5.12	1.26	4.31	
γ,bike_inc	0 19	2.40	-0.17 🔵	-3.15	0.00	-0.02	0.09	1.94	0.09	1.96	
γ,car_inc	fixed										
γ,emic_inc	0.00	0.01	-0.21 🔵	-2.72	0.18	2.63	-0.02	-0.41	0.07	1.30	
γ,pt_inc	0.19	2.37	-0.14 🔵	-2.57	-0.19	2.91	-0.07 🔵	-1.41	0.12	2.56	
BETA_FARE	-0.01	-0.33	-0.85 🔴	-3.89	-0.94 📕	-4.96	-0.19	-3.71	-0.03	-3.18	
BETA_TIME	-0.07	-3.21	-0.09	-4.87	-0.09	-4.77	-0.13	-7.01	-0.05	-3.47	
Commite Cine						000.00		1007.00			
sample size	65	937.00			830.00		828.00		1297.00		
Rho-square:	0	.28	8 0.237			0.121		0.135		0.112	

- Highest ASC in Barcelona
- ASCemic (+) in all models
- Copenhagen lower on e-micromobility a high on Bike
- Munich and Copenhagen high on Bike, the rest high on e-micromobility
- Stockholm and Copenhagen (+) values for all
- Munich (-) values for all
- Tel Aviv (-) for PT and e-micromobility
- Barcelona (-) for PT (+) for emicromobility
- All negative values = disutility
- Munich and Barcelona had higher disutility
- Lower disutility from Copenhagen and Stockholm

SP Systematic functions

$$=> V_{i,t} = \underline{ASC_i} + \underline{\gamma_{i,k}}S_{k,t} + \sum_{m}\underline{\beta_{i,m}}X_{i,m}$$

 $\sum_{j=1}^{n} e$

Systematic Functions – Results	
$V_{i,copenhagen} = ASC_i + \gamma_{i,income} * 5.85 + -0.01 * (X_{i,fare}) + -0.07 * (X_{i,time})$	Income average values
$V_{i,munich} = ASC_i + \gamma_{i,income} * 5.42 + -0.85 * (X_{i,fare}) + -0.09 * (X_{i,time})$	
$V_{i,barcelona} = ASC_i + \gamma_{i,income} * 3.44 + -0.94 * (X_{i,fare}) + -0.09 * (X_{i,time})$	Estimated Beta for fare
$V = ASC + \alpha + ASS + 0.10 + (Y + 0.12 + (Y + 1))$	
$V_{i,tel aviv} - ASC_i + V_{i,income} * 4.00 + -0.19 * (A_{i,fare}) + -0.15 * (A_{i,time})$	Estimated Beta for time
$V_{i,stockholm} = ASC_i + \gamma_{i,income} * 5.44 + -0.03 * (X_{i,fare}) + -0.05 * (X_{i,time})$	
	$=>$ $P_i = \frac{e^{V_i}}{\nabla I - \frac{V_i}{V_i}}$

SP Estimated Probabilities

Alternatives		Copenhagen	Munich	Barcelona	Tel Aviv	Stockholm
	Mean Income Value	5.85	5.42	3.44	4.88	5.44
Car	fare	22.5	1.5	1.5	5.775	35
	time	12	12	12	12	12
	Vt	-1.065	-2.355	-2.490	-2.657	-1.650
	Probability	3.79%	9.41%	5.71%	13.25%	9.58%
Public Transport	fare	15	1	1	3.85	30
	time	20	20	20	20	20
	Vt	0.892	-1.089	-1.333	-1.682	0.013
	Probability	26.79%	33.36%	18.15%	35.15%	50.57%
E-micromobility	fare	30	2	2	7.7 (4)	30
	time	15	15	15	15	15 (3)
	Vt	-0.320	-2.979	-0.361	-2.283	-1.650
	Probability	7.97%	5.04%	47.95%	19.26%	9.58%
Bike-sharing	fare	12 (2)	0.8	0.8 (1)	3.08	8
	time	15	15	15	15	15
	Vt	1.722	-0.642	-0.892	-1.765	-0.500
	Probability	61.45%	52.18%	28.20%	32.33%	30.27%

- ① A higher degree of emicromobility usage is expected in Barcelona
- 2 Munich and Copenhagen are less conducive for the use of emicromobiles, as bike-sharing was overall preferred.
- 3 Stockholm is more conducive for the use of PT, with a low degree of emicromobility usage
- ④ The second highest probability of e-micromobility was seen in Tel Aviv, as PT and bike-sharing were overall preferred.

Discussion and Conclusions

Overall findings

- E-micromobiles are not a primary mode and is not used regularly in all locationns
- Fees and prices are not satisfactory, especially in Scandinavia
- Better pricing in Scandinavia is needed for better competition (fares are the same as car usage)
- E-micromobiles face high competition in Scandinavia (fundamental relationship with bikes)
- It may reach potential with suitable infrastructure and policies; given that safety, ilegal
 parking and conflict with other modes are the main concerns
- E-micromobiles to replace walking trips and used along with public transportation, it is proposed to have parking facilities near PT stations
- All locations have low time sensitivity (good for e-micromobiles)
- All locations have high price sensitivity (especially in Munich and Barcelona)
- E-micromobility is shown strong bias in Barcelona and Tel Aviv, while Stockholm, Copenhagen and Munich lack interest (bias)

Questions?