

ARITHMETIC OPERATIONS, PART 2.

Lecture 4.

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Operations in floating-point numbers:
 - $\bullet A = \pm m_A * 2^{\pm k_A}$
 - $B = \pm m_A * 2^{\pm k_B}$
- Addition/substraction:
 - 1. it is needed to convert the characteristics to the same value,
 - 2. addition,
 - 3. if it is needed, it has to transform the result
 - addition/substraction is executed only with mantissas! (m_A and m_B)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Addition/substraction, e.g.
 - $A = 0.9 * 10^2$
 - $B = 0.993 * 10^4$
- Addition/substraction:
 - 1. coversion: $0.9*10^2=0.09*10^3=0.009*10^4$
 - 2. addition: 0,009 + 0,993 = 1,002
 - 3. transformation to normalized form: $1,002*10^4=0,1002*10^5$

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Addition/substraction, e.g.
 - $A = 0.11001 * 2^4$
 - $B = -0.111111 * 2^5$
- Addition/substraction:
 - 1. coversion: $0,11001*2^4=0,011001*2^5$
 - 2. substraction, but A>B, then the substraction=B-A=0,111110-0,011001=0,100101
 - 3. result:-0,100101*2⁵=-18,5₁₀

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Loading of operands • Algorithm of a floating-point no yes $K_A = K_B$ adder in the ALU conversion yes no $S_A = S_B$ A+B yes no A>B signed bit not changes A-B B-A signed bit=A signed bit=B 4/10/2018

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• Multiplication:

•
$$A = \pm m_A * 2^{\pm k_A}$$

•
$$B = \pm m_A * 2^{\pm k_B}$$

•
$$N = A * B$$

•
$$N = (\pm m_A * 2^{\pm k_A}) * (\pm m_B * 2^{\pm k_B})$$

•
$$N = \pm m_A * m_B * 2^{k_A + k_B}$$

• Algorithm:

- 1. multiplication of the mantissas, (multiplication: see later),
- 2. signed bit: $S_N = S_A \oplus S_B XNOR$,
- 3. addition of the characteristics offset zero point representation!!,
- 4. if it is needed, it has to transform the result (e.g. to normalized form).

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• Division:

•
$$A = \pm m_A * 2^{\pm k_A}$$

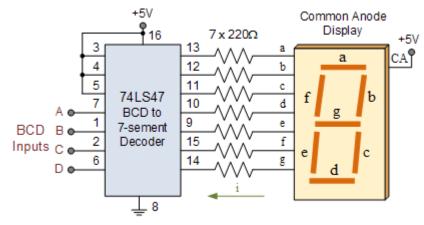
•
$$B = \pm m_A * 2^{\pm k_B}$$

•
$$N = \frac{A}{B}$$

•
$$N = \frac{\pm m_A * 2^{\pm k_A}}{\pm m_B * 2^{\pm k_B}}$$

•
$$N = \pm \frac{m_A}{m_B} * 2^{k_A - k_B}$$

• Algorithm:


- 1. division of the mantissas by repeated substraction (see later),
- 2. signed bit: $S_N = S_A \oplus S_B XNOR$,
- 3. substraction of the characteristics, dividend divisor, offset zero point representation!!,
- 4. if it is needed, it has to transform the result (e.g. to normalized form)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Binary Coded Decimal number representation:
 - BCD is a class of binary encodings of decimal numbers,
 - each decimal digit is represented by a fixed number of bits,
 - usually four/eight,
 - 4-bits are equals to 2^4 =16 code words, called tetrades,
 - nibble or tetrade: 0000, 0001, ..., 1000, 1001,
 - pseudo-tatrades or pseudo-decimal digits: 1010, 1011, 1100, 1101, 1110, 1111
 - e.g: $93_{10} = 10010011_{BCD}$
 - e.g: $10100111000.101_2 = 0101\ 0011\ 0001.1010_{BCD} = 538.625_{10}$
 - advatage: simple coding/decoding,
 - problem: arithmetic operations.

source: https://www.electronics-tutorials.ws/binary/binary-coded-decimal.html

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Addition in BCD:
 - requisite 1: $A_{BCD} + B_{BCD} = (A+B)_{BCD}$,
 - requisite 2: it has to be working for complement code also,
- Case 1:

• A =
$$273_{10}$$
, B= 512_{10}

$$\frac{273_{10}}{+512_{10}}$$

$$\frac{785_{10}}{785_{10}}$$

$$\begin{array}{c} -0010\ 0111\ 0011_{\rm BCD} \\ +0101\ 0001\ 0010_{\rm BCD} \\ \hline 0111\ 1000\ 0101_{\rm BCD} \end{array}$$

• the result is good.

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• Case 2:

•
$$A = 273_{10}, B = 879_{10}$$

DA = decimal adjust (a carry between tetrades)

- solution:
 - if 9<Result≤15, it is needed to add 6 to the result (in every tetrade, where this condition is true)

if DA is needed:

Res=Res + correction (+6) +1 (+16)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

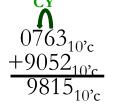
Department of Control for Transportation and Vehicle Systems

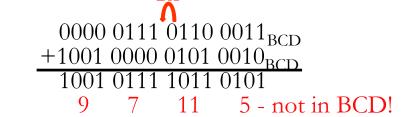
• Case 3:

- solution:
 - if it was a decimal adjust, it has to be add 6 to the result

here DA exists (from the previous addition, then

Res= Res+correction (+6)


• Summation:


	ty of Transportation Engineering Department	wrong Res	good Res	DA	correction
nation:	0	0000	0000	No DA	Not necessary
	1	0001	0001		
	2	0010	0010		
	3	0011	0011		
	4	0100	0100		
	5	0101	0101		
	6	0110	0110		
	7	0111	0111		
	8	1000	1000		
	9	1001	1001		
	10	1010	0000	No DA, it has to generate it	+6 (+0110)
	11	1011	0001		
	12	1100	0010		
	13	1101	0011		
	14	1110	0100		
	15	1111	0101		
	16	(1)0000	0110	it generates	
	17	(1)0001	0111		
	18	(1)0010	1000		

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

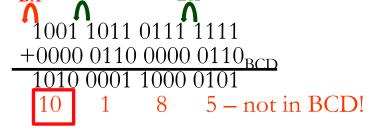
- Department of Control for Transportation and Vehicle Systems
- Substraction: addition in 10's complement code (in binary form)
- Case 1:
 - A >0, B<0, A =763, B=-948, k=4, Res=-185₁₀=9815_{10'c}
 - 10's complement code of -948 = 10^4 948 = $9052_{10'c}$

• the result is not good, DA is missing, we have to add six to the second tetrade!

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

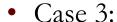
Department of Control for Transportation and Vehicle Systems



• A <0, B>0, A =-763, B=948, k=4, Res=185₁₀=185₁₀'c

• 10's complement code of -763 = 10^4 -763= $9237_{10'c}$ • $1001\ 0010\ 0011\ 0111_{BCD}$ • $1001\ 0010\ 0100\ 1000_{BCD}$ unnecessary bit

• $1001\ 1011\ 0111\ 1111$ 9 11 7 15 - not in BCD!


• the result is not good, DA is missing, we have to add 6 to the adequate tetrades!

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• A <0, B<0, A =-763, B=-948, k=4, Res=-1711₁₀

• 10's complement code of -1711 = 10^4 -1711= $8289_{10'c}$ $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\$

here DA exists (from the previous addition, then

Res= Res+correction (+6)

• the result is not good, DA is missing, we have to add 6 to the adequate tetrades!

unnecessary tetrade

0001 0010 0010 1000 1001_{BCD} +0000 0110 0000 0000 0000_{BCD} 1010 1001 0010 1000 1001 10 8 2 8 9- not in BCD! 1010 1001 0010 1000 1001_{BCD} +0110 0000 0000 0000 0000_{BCD} 0001 0000 1001 0010 1000 1001_{BCD} 1 0 8 2 8 9 - in BCD!

Budapest University of Technology and Economics

■ Faculty of Transportation Engineering and Vehicle Engineering ■ Department of Control for Transportation and Vehicle Systems ■

- Other method in BCD addition:
 - correction before the addition, then substraction -6, where no was decimal adjust

End of Lecture 4.

Thank you for your attention!