
ENCODING, NUMBER

REPRESENTATIONS IN COMPUTING,

PART 1.
Lecture 3.

• Generally used numeral systems:

• binary,/base-2, e.g: 00011101

• each digit is referred to as a bit,

• used internally by almost all modern computers and computer-based devices,

• it is a straightforward implementation in digital electronic circuitry using logical gates,

• decimal/base10/denary, e.g: 156

• most widely used,

• fractional part can be:

• finite,

• infinite (or non terminating)

• repeating sequence of digits

• irrational numbers have infinite (non terminating) decimal representations,

• irrational number is a real number, that cannot be expressed as a ratio of integers, e.g. π=3.14159……..

• if we would like to use it for computing, we have to convert it – division/multiplication algorhitms

27/09/2018 70

Encoding

Encoding, Number Representation in Computing

• hexadecimal/base-16/hex, e.g: 1BE45A

• it uses sixteen distinct symbols 0…9,A…F,

• widely used by computer system designers and programmers

• General form of numbers:

• 𝐴 ≝ ±𝑎−𝑚𝑎−𝑚+1𝑎−𝑚+2…𝑎−1𝑎0, 𝑎1𝑎2…𝑎𝑛 , where

• 𝑎−𝑚, 𝑎−𝑚+1 , … , 𝑎−1𝑎0, 𝑎1, … , 𝑎𝑛 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑜𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

• if the base of the numeral system is r (radix), the number A can be expressed as:

• 𝐴 = ±σ𝑖=−𝑚
𝑛 𝑎𝑖𝑟

−𝑖 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑎𝑖 < 𝑟, 𝑓𝑜𝑟 ∀𝑖

• e.g: A=7346

• 𝐵10 = 734610 = 7 ∗ 103 + 3 ∗ 102 + 4 ∗ 101 + 6 ∗ 100 = 7000 + 300 + 40 + 6 = 734610,

• 𝐵8 = 73468 = 7 ∗ 83 + 3 ∗ 82 + 4 ∗ 81 + 6 ∗ 80 = 3584 + 192 + 32 + 6 = 381410,

27/09/2018 71

Encoding

Encoding, Number Representation in Computing

• fixed-point representation:

• 𝐴 = ±𝑎−𝑚𝑎−𝑚+1𝑎−𝑚+2…𝑎−1𝑎0, 𝑎1𝑎2…𝑎𝑛,

• where the integer part of the number is located to the left from the radix point, and the fractional part is located

to the right from the radix point,

• it is generally used to represent numbers with less digits,

• floating-point representation:

• 𝐴 = ±𝑚 ∗ 𝑟±𝑘 , 𝑤ℎ𝑒𝑟𝑒 𝑟−1 ≤ 𝑚 < 𝑟0,

• m= mantissa (significand),

• k=characteristic,

• r=radix (base)

• e.g: -0.999*10+41, r=10

• every number can be represented in this form!

• nowdays, r is equal to 2 or 16 in modern computers!

27/09/2018 72

Encoding

Encoding, Number Representation in Computing

• Encoding: it is needed to convert an information into an appropriate form,

• appropriate form: favorable form to data processing,

• Generally used encoding systems:

• for numbers:

• pure binary code,

• complement code,

• inverse binary code,

• binary-coded decimal – BCD,

• Stibitz code,

• Gray code,

• etc…

27/09/2018 73

Encoding

Encoding, Number Representation in Computing

• for characters:

• telex-code:

• started in the 1930’s, it was a point-to point teleprinter system, it was last used in the United Kingdom in 2008

• used 5 digits, worked with number-character changing characters

27/09/2018 74

Encoding

Encoding, Number Representation in Computing

Telestar 12x
source:
http://www.cr
yptomuseum.c
om/telex/telef
unken/telestar
/index.htm

http://www.cryptomuseum.com/telex/telefunken/telestar/index.htm

• ASCII code:
• American Standard Code for International Interchange,

• earliest version: 7 digits + 1 specified bit,

• 27=128 code words, 7. digit: parity bit, contained numbers from 0 to 9, lower case letters from a to z, uppercase letters from A to Z,
punctuation sysmbols, control codes, space…

• Extended ASCII:
• 28=256 code words, ASCII+extensions,

• ISO 8859-1: Latin 1. for Western European Languages, ANSI

• ISO 8859-2: Latin 2. for Eastern European Languages,

• ISO 8859-3 for Cyrillic Languages

• Code page 1252:
• it is a compatible subset of ISO 8859-1 with extra characters,

• this is the standard character encoding of Western European language versions of Microsoft Windows, including English versions

27/09/2018 75

Encoding

Encoding, Number Representation in Computing

source: http://www.asciitable.com/

source: http://www.asciitable.com/

http://www.asciitable.com/
http://www.asciitable.com/

• UNICODE – ISO/IEC 104646:
• most recent version: Unicode 11.0, contains 137439

characters, covering 146 modern and historic scripts

• 16 digits in 17 plains, in every plan 65535 code words,

• 0. plain: Basic Multilingual Plane (Latin-1),

• 1. plain. Supplementary Multilingual Plane,

• 2. plain: Supplementary Ideographic Plane,

• 3…13. plains: unassigned,

• 14. plain: Supplementary Special Purpose Plane,

• 15, 16. plains: Supplementary Private Use Area

• 17*216=1114112 pieses of characters (possibility)

• etc…

27/09/2018 76

Encoding

Encoding, Number Representation in Computing

• for images:

• BMP,

• JPEG,

• etc…

27/09/2018 77

Encoding

Encoding, Number Representation in Computing

source:
http://mkweb.bcgsc.ca/tuple
encode/?color_charts

http://mkweb.bcgsc.ca/tupleencode/?color_charts

• Fixed-point arithmetic

• the radix point can be:

• before the first data bit,

• after the first data bit,

• between those,

• for real fractional numbers, range: −1 ≤ 𝑁 ≤ 1 − 2−𝑛, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 2−𝑛

• for integers (commonly used), range: −2𝑛 ≤ 𝑁 ≤ 2𝑛 − 1, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 1

• for other fractional numbers, range: −2𝑚 ≤ 𝑁 ≤ 2𝑚 − 2𝑚−𝑛, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 2𝑚−𝑛

• the signed bit is the first bit (usually):

• it is 0, if the number is positive,

• it is 1, if the number is negative

27/09/2018 78

Binary Encoding

Encoding, Number Representation in Computing

• Negative numbers in fixed-point arithmetic?

• real numbers not exist in the registers!

• the integers are represented in 2’s complement code!

• with the aim of this method, the substraction may originate in summation

• 𝑁2𝑐 = ൝
𝑁, 𝑖𝑓 𝑁 ≥ 0

2𝑘 − 𝑁 , 𝑖𝑓 𝑁 < 0,𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 (𝑠𝑖𝑔𝑛 + 𝑢𝑠𝑒𝑓𝑢𝑙 𝑑𝑖𝑔𝑖𝑡𝑠)

• e.g, if k=8:

• 65  01000001

• - 65  10111111 (256-65 = 191)

27/09/2018 79

Binary Encoding

Encoding, Number Representation in Computing

• Addition in 2’s complement code:

• requisite: A2c + B2c = (A+B)2c,

• instead of substraction, we have to realize addition in the case of the complement coded

numbers!

• Case 1:

• A > 0 and B > 0 and A > B

• in this case: A2c = Ab and B2c = Bb

• then: A2c+B2c = Ab + Bb = (A+B)2c

27/09/2018 80

Binary Operations

Encoding, Number Representation in Computing

• Case 1, e.g:

• A =17, B=9, k=8

• in this case: A2c = Ab=00010001 and B2c = Bb =00001001, if k=8

• then: A2c+B2c = Ab + Bb = (A+B)2c ≡ 26 =00011010

• CY = carry

27/09/2018 81

Binary Operations

Encoding, Number Representation in Computing

• Case 1, - problem, the sum is bigger, then the number range, e.g:

• A =90, B=56, k=8

• in this case: A2c = Ab=01011010 and B2c = Bb =00111000, if k=8

• then: A2c+B2c = Ab + Bb = (A+B)2c =10010010!!!

• the result is wrong, but CY=0! solution: e.g: OV – overflow bit is 1, if the result is not in the range: -128…127

• eg. in this case 10010010 = 146 in denary numeral system

27/09/2018 82

Binary Operations

Encoding, Number Representation in Computing

• Case 2:

• A > 0 and B < 0 and 𝐴 > 𝐵

• in this case: A2c = Ab and B2c =256- Bb, if k=8

• then: A2c+B2c = Ab +256- Bb = (Ab-Bb)+256

• considering, that (Ab - Bb) > 0, there is an unnecessary bit – carry – in the result

• Case 2, e.g:

• A =17, B=-9, k=8

• in this case: A2c = Ab=00010001 and B2c = 256-Bb =11110111, if k=8

• then: A2c+B2c = (Ab-Bb)2c+256=≡ 8 =100001000 with an unnecessary bit

27/09/2018 83

Binary Operations

Encoding, Number Representation in Computing

• the result is good, but CY=1, that is the unnecessary bit!

27/09/2018 84

Binary Operations

Encoding, Number Representation in Computing

• Case 3:

• A < 0 and B > 0 and 𝐴 > 𝐵

• in this case: A2c =256- Ab and B2c =Bb, if k=8

• then: A2c+B2c =256-Ab + Bb =256- (Ab-Bb) considering, that (Ab - Bb) > 0, the result will be a negative number

in 2’s complement code!

• Case 3, e.g:

• A =-17, B=9, k=8

• in this case: A2c = 256-Ab=11101111 and B2c = Bb =00001001, if k=8

• then: A2c+B2c = (Ab-Bb)2c+256=≡ −8 =11111000

• the result is good, because the 2’s complement code of -8 =256-8=11111000

27/09/2018 85

Binary Operations

Encoding, Number Representation in Computing

• the result is good, the signed bit =1!

27/09/2018 86

Binary Operations

Encoding, Number Representation in Computing

• Case 4:

• A < 0 and B < 0 and 𝐴 > 𝐵

• in this case: A2c =256- Ab and B2c =256-Bb, if k=8

• then: A2c+B2c =256-Ab + 256-Bb =256- (Ab+Bb)+256considering, that (Ab - Bb) > 0, the result will be a

negative number in 2’s complement code, and also will be in the result an unnecessary bit!

• Case 4, e.g:

• A =-17, B=-9, k=8

• in this case: A2c = 256-Ab=11101111 and B2c = 256-Bb =11110111, if k=8

• then: A2c+B2c = (Ab-Bb)2c+256=≡ −26 =111100110 with an unnecessary bit

• the result is good, because the 2’s complement code of -26 =256-8=11100110

27/09/2018 87

Binary Operations

Encoding, Number Representation in Computing

• the result is good, the signed bit =1!, but CY=1, that is the unnecessary bit!

27/09/2018 88

Binary Operations

Encoding, Number Representation in Computing

• Summary of addition (substraction) in 2’s complement code:

27/09/2018 89

Binary Operations

Encoding, Number Representation in Computing

• Logical scheme

of a binary

adder (e.g. in an

ALU):

27/09/2018 90

Binary Operations

Encoding, Number Representation in Computing

Loading of operands

A >0
yesno

no
B >0

yesyes
B >0

no

++ +

noOVERFLOW
error!

carry - maskcarry - mask sign= 1
yes

• Fractional numbers in 2’s complement code:

• 𝑁2𝑐 = ቊ
𝑁, 𝑖𝑓 1 > 𝑁 ≥ 0

2 − 𝑁 , 𝑖𝑓 − 1 < 𝑁 < 0

• e.g:

• N=-0.75

• in binary form: -0.7510=-0.112

• 210=102, then:

• the signed bit is the bit located at the local value 20

27/09/2018 91

Binary Operations

Encoding, Number Representation in Computing

• Fractional numbers in 2’s complement code:

• with other words, it is a transformation, shown on the next picture, if the fractional number is: betwen -1…1

• not used in computer technology…

27/09/2018 92

Binary Operations

Encoding, Number Representation in Computing

• Floating-point arithmetic – standard IEEE 754 -1985, nowdays: ISO/IEC/IEEE

60559:2011:

• 𝐴 = ±𝑚 ∗ 2±𝑘, - every number can be written in this form,

• two main types are (other types also exist):

• single-precision floating-point number – number representation

in 32 digits, called also binary32

• double-precision floating-point number – number representation

in 64 digits, called also binary64

• signed bit:

• 0, if the number is positive

• 1, if the number is negative

27/09/2018 93

Binary Encoding

Encoding, Number Representation in Computing

• characteristic – single-precision:

• −2−7 + 2 ≤ 𝑘 < 27 − 1

• −126 ≤ 𝑘 < 127 offset zero-point representation:

• -126=00000001

• -125=00000010

• -124=00000011

• …

• 0=01111111

• 1=10000000

• 2=10000010

• …

• 127=11111110

27/09/2018 94

Binary Encoding

Encoding, Number Representation in Computing

• characteristic – double-precision:

• −210 + 2 ≤ 𝑘 < 210 − 1

• −1022 ≤ 𝑘 < 1023 offset zero-point representation:

• -1022=00000000001

• -1021=00000000010

• -1020=00000000011

• …

• 0=01111111111

• 1=10000000000

• 2=10000000001

• …

• 1023=11111111110

27/09/2018 95

Binary Encoding

Encoding, Number Representation in Computing

• range of floating-point numbers:

• single precision floating point numbers: − 1 − 2−23 ∗ 2127 ≤ 𝑁 ≤ 1 − 2−23 ∗ 2127

• double precision floating point numbers: − 1 − 2−52 ∗ 21023 ≤ 𝑁 ≤ 1 − 2−52 ∗ 21023

• 𝑁𝑚𝑎𝑥 ≈ 21023 ≈ 9 ∗ 10307

• precision of floating-point numbers:

• single precision floating point numbers: 2−23 ∗ 2127 = 2104

• double precision floating point numbers: 2−52 ∗ 21023 = 2971

• conversion from denary numeral system to floating-point arithmetic:

1. convert to binary form,

2. convert to normalized binary form,

3. calculation of the characteristic,

4. writing in the single/double precision floating point representation

27/09/2018 96

Binary Encoding

Encoding, Number Representation in Computing

• conversion from denary numeral system to single precision floating-point representation, e.g:

1. convert to binary form,
• by using the division and multiplication algorithmes:

• 635,01562510=1001111011,0000012

2. convert to normalized binary form,
• =1001111011,000001=1001111011,000001*20

• =1001111011,000001*20=1,001111011000001*29

3. calculation of the characteristic,
• by using the offset zero point representation, c=127+k=127+9=136

• 13610=100010002 by using the division algorithm

4. writing in the single precision representation
• in binary fom:

• in hexadecimal form: 441EC100

27/09/2018 97

Binary Encoding

Encoding, Number Representation in Computing

• conversion from single precision floating-point representation to denary numeral system, e.g:

1. writing in the single precision representation

• in hexadecimal form: C4F9AB10

• in binary fom:

2. calculation of the characteristic,

• by using the offset zero point representation, c=100010012=13710

• k=c-127=137-127=10

3. convert from normalized binary form to binary form,

• =-1,1111001101010110001*210=-11111001101,010110001*20

4. convert to decimal form,

• -11111001101, 010110001 2=-1997,34570312510

27/09/2018 98

Binary Encoding

Encoding, Number Representation in Computing

End of Lecture 3.

Thank you for your attention!

