
Mechatronics and Microcontrollers

Szilárd Aradi PhD

Refresh of C

About the C programming language

• The C programming language is developed by Dennis M Ritchie

in the beginning of the 70s

• One of the most popular generic programming languages.

• And the base of many other languages

20/11/2018 Mechatronics and Microcomputers 2

Language structure

• The language is Case Sensitive

• Identifiers

• English alphabet (’a’..’z’ , ’A’..’Z’)

• Numbers (’0’..’9’)

• ’_’ underscore character

• Must not start with a number

• Good: Variable, _calulate, _5,a_, __

• Not good: változó, 32szam,

20/11/2018 Mechatronics and Microcomputers 3

Language structure

• Literals

• Given values, always has a type

• Character arrays

• e.g. ”string with a new line character\n”

• Keywords and flow control

• Operators

• =, +, - stb.

• Other separators

20/11/2018 Mechatronics and Microcomputers 4

Program structure

#include

#define

declarations:

constants

variables

functions

int main(void){}

Function definitions

20/11/2018 Mechatronics and Microcomputers 5

Types

Type modifiers:

char One byte 0..255

short , or
short int

The 16-bit short int data type -215..215-1

int, or
long int

The 32-bit int data type -231..231-1

float
The float data type is the smallest of the three floating point
types (32 bit)

double Double precision floating data type (64 bit)

unsigned for example: unsigned int is :0.. 232-1

signed for example: signed char is :-128..127

short

long for example long long int is 64 bit

Important! Atmel AVR uses fixed-point arithmetic, thus integer types are preferred.

20/11/2018 Mechatronics and Microcomputers 6

Constants

Escape sequences

\a bell

\b backspace

\f formfeed

\n new line

\r carriage return

\t horizontal tab, HTAB

\v vertical tab, VTAB

\\ backlash

\? ?

\' ’

\" ”

\ooo octal

\xhh hexadecimal

Constants

1234 int constant

1234L long

1234UL unsigned long

0x1f2 hexa int

0x1f2ULhexa unsigned long

1234.5 double

1234.5f float

’c’ char

”szoveg”char[] (string)

20/11/2018 Mechatronics and Microcomputers 7

Variable declarations

20/11/2018 Mechatronics and Microcomputers 8

Declaration:

int i;
float f,g;
char c;

Initialization:

char c=a;
char s[]=”string”;
const int j=12;

Assignment operator

• Assignment:

• i=2;

• Compound assignment operators perform an operation involving

both the left and right operands, and then assign the resulting

expression to the left operand.

• i=i+2;
Compound assignment operators format:

• i+=2;
Assignment has a return value

20/11/2018 Mechatronics and Microcomputers 9

Arithmetic Operators

20/11/2018 Mechatronics and Microcomputers 10

The binary arithmetic operators are +, -, *, /, and the modulus operator
%. Integer division truncates any fractional part. The expression x % y
produces the remainder when x is divided by y, and thus is zero when y
divides x exactly.

The % operator cannot be applied to float or double. The direction of
truncation for / and the sign of the result for % are machine-dependent
for negative operands, as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower
than the precedence of *, /, and %, which is in turn lower than unary +
and -. Arithmetic operators associate left to right

Relational and Logical Operators

20/11/2018 Mechatronics and Microcomputers 11

The relational operators are: >, >=, <, <=.
They all have the same precedence. Just below them in precedence are
the equality operators: ==, !=

By definition, the numeric value of a relational or logical expression is 1 if
the relation is true, and 0 if the relation is false

Expressions connected by && or II are evaluated left to right, and
evaluation stops as soon as the truth or falsehood of the result is known.

The unary negation operator I converts a non-zero operand into 0, and a
zero operand into 1

Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing variables. The

increment operator ++ adds 1 to its operand, while the decrement operator -- subtracts 1.

The unusual aspect is that ++ and -- may be used either as prefix operators (before the

variable, as in ++n), or postfix (after the variable: n++). In both cases, the effect is to

increment n. But the expression +-n increments n before its value is used, while n« +

increments n after its value has been used. This means that in a context where the value is

being used, not just the effect, ++n and n++ are different.

If n is 5, then

x = n++;
sets x to 5, but

x = ++n;

sets x to 6. In both cases, n becomes 6

20/11/2018 Mechatronics and Microcomputers 12

Bitwise Operators

20/11/2018 Mechatronics and Microcomputers 13

C provides six operators for bit manipulation; these may only be applied to
integral operands, that is, char, short, int, and long, whether signed or
unsigned

& bitwise AND

| bitwise inclusive OR

^ bitwise exclusive OR

<< left shift

>> right shift

~ one's complement

If-else

20/11/2018 Mechatronics and Microcomputers 14

• The else is associating with the closest previous else-

less if:

if (n>0)
if (a>b)
z=a;
else
z=b;

Switch example

char c;
switch (c){
case 'a': case 'e': case 'i': case 'o':
case 'u':

printf("maganhangzo"); break;
case ' ':
printf("Space"); break;

default: printf ("Egyik sem");

}

20/11/2018 Mechatronics and Microcomputers 15

While example

char c=0;
while(++c<10)
{

printf("%d ",c);
}

20/11/2018 Mechatronics and Microcomputers 16

Result: 1 2 3 4 5 6 7 8 9

While example with continue

char c=0;
while(++c<10)
{
if (c==3) continue;

printf("%d ",c);
}

20/11/2018 Mechatronics and Microcomputers 17

Result: 1 2 4 5 6 7 8 9

While example with break

char c=0;
while(++c<10)
{
if (c==3) continue;
if (c==6) break;
printf("%d ",c);
}

20/11/2018 Mechatronics and Microcomputers 18

Result: 1 2 4 5

The C Preprocessor

• C provides certain language facilities by means of a

preprocessor, which is conceptually a separate first step

in compilation:

• #include, to include the contents of a file during compilation

• #define, to replace a token by an arbitrary sequence of

characters

• conditional compilation and

• macros with arguments

20/11/2018 Mechatronics and Microcomputers 19

Macro Substitution example

#define EOS '\0'
#define TRUE 1
#define boole int
int main(void)
{
boole vege=0;
char s[]="hello";
int i=0;
do
{

if (s[++i]==EOS)
vege=TRUE;
}
while (!vege);
printf("%d",i);
getchar();

}

20/11/2018 Mechatronics and Microcomputers 20

int main(void)
{
int vege=0;
char s[]="hello";
int i=0;
do
{

if (s[++i]==’\0’)
vege=1;
}
while (!vege);
printf("%d",i);
getchar();

}

Problems, Threats

#define abs(x) ((x) < 0 ? (-(x)) : (x))
#define min(a, b) ((a) < (b) ? (a) : (b))

int i=-5; int j=-6;
printf("%d",min(abs(i),abs(j)));

The previously defined macro uses the „parameters” twice, hence:

min(i++,j++)
substituted with:

((i++) < (j++) ? (i++) : (j++))

therefore one of the variables increments twice

20/11/2018 Mechatronics and Microcomputers 21

Wrong usage

20/11/2018 Mechatronics and Microcomputers 22

Further examples for wrong usage:

#define MARGIN 2
#define WIDTH 8
#define HEIGHT 10
#define FULLWIDTH WIDTH+MARGIN
#define AREA FULLWIDTH*HEIGHT

Wrong result, can be fixed with proper bracketing.

also,

#define square(x) x*x
square(i+1);

substituted with: i+1*i+1

4.11.2. Fix

20/11/2018 Mechatronics and Microcomputers 23

Fixing with parenthesis:

#define MARGIN 2
#define WIDTH 8
#define HEIGHT 10
#define FULLWIDTH (WIDTH+MARGIN)
#define AREA FULLWIDTH*HEIGHT

also,

#define square(x) (x)*(x)
square(i+1);

substituted with: (i+1)*(i+1)

Arrays

int t[10];

// without intialization

int t[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// giving values to all elements

int t[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// same, the number of elements define array length

int t[10] = {1, 2, 3, 4};

// only the first 4 elements are initialized

20/11/2018 Mechatronics and Microcomputers 24

5.7 Multi-dimensional Arrays

int t[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

int t[3][4] = {0, 1, 2, 3,

4, 5, 6, 7,

8, 9,10,11};

int t[3][4] = {{0, 1, 2, 3},

{4, 5, 6, 7},

{8, 9,10,11}};

20/11/2018 Mechatronics and Microcomputers 25

Character Arrays

char s[200] = "Hello";

char s[200] = {'H', 'e', 'l', 'l', 'o', '\0'};

The two definitions are the same

Strings are terminated with the 0 byte (('\0') charater

char s[] = "Hello";

Array length will be set to 5+1 because of the 0

20/11/2018 Mechatronics and Microcomputers 26

Basics of Structures

struct pont{
int x;

int y; };

• This struct declaration defines a type, where the point is the
structure tag and x and y are the members.

• Example for shorthand usage:

struct point pt;

• Defines a point type variable pt. Initialization acan be done by
listing member values:

struct point pt={ 320 , 200 };

printf("%d, %d", pt.x, pt.y);

20/11/2018 Mechatronics and Microcomputers 27

Functions Introduction

• After a while, the single main(){} program will be too large
and complex.

• There are code sections and algorithms that need to be used at
multiple code locations.

• Too complex algorithms reduce the readability of the program

• There is a need to structure our program

• Functions break large computing tasks into smaller ones, and
enable people to build on what others have done instead of
starting over from scratch. Appropriate functions hide details of
operation from parts of the program that don't need to know
about them, thus clarifying the whole, and easing the pain of
making changes

20/11/2018 Mechatronics and Microcomputers 28

Pointers

Memory
address
(byte num)

Variable Value (int)

1000 ?

1004 i 10

1008 ip ?

1012 ?

---- *ip ?

&i 1004

int i=10;

int *ip;

ip=&i;

printf("%d\n",*ip);

i++;

printf("%d\n",*ip);

Memory
address
(byte num)

Variable Value (int)

1000 ?

1004 i 10

1008 ip 1004

1012 ?

---- *ip 10

&i 1004
10

11

Memory
address
(byte num)

Variable Value (int)

1000 ?

1004 i 11

1008 ip 1004

1012 ?

---- *ip 11

&i 1004

Console:

20/11/2018 Mechatronics and Microcomputers 29

Function example

int add(int a, int b)

{

return a+b;

}

int main(int argc, char *argv[])

{ int x=1,y=2;

printf("x+y=%d",add(x,y));

return 0;

}

1 2

1 2

3

3

20/11/2018 Mechatronics and Microcomputers 30

Call by value example

void swap(int a, int b)

{

int c;

c=a;a=b;b=c;

return;

}

int main(int argc, char *argv[])

{

int x=1,y=2;

swap(x,y);

printf("x:%d y:%d",x,y);

return 0;

}

1 2

1 2

a=2, b=1, just for
the copied variables

„x:1 y:2” swap has no
effect outside

20/11/2018 Mechatronics and Microcomputers 31

Pointers and Function Arguments

Because of call by value, swap can't affect the arguments a and b in

the routine that called it. The function above only swaps copies

of a and b. The way to obtain the desired effect is for the calling

program to pass pointers to the values to be changed:

swap(&a, &b);

void swap(int *px, int *py) /* Right */
{ int temp=*px;

*px = *py;
*py = temp;

}
20/11/2018 Mechatronics and Microcomputers 32

5.3. Pointers and Arrays

• The notation a[i] refers to the i-th element of the array. If pa is a

pointer to an integer, declared as int *pa; then the

assignment pa = &a[0] sets pa to point to element zero of a;

that is, pa contains the address of a[0].

• Now the assignment x=*pa; will copy the contents of a[0]
into x.

20/11/2018 Mechatronics and Microcomputers 33

5.3. Pointers and Arrays

Thus, if pa points to a[0], *(pa+1) refers to the

contents of a[1],

pa+i is the address of a[i], and *(pa+i) is the

contents of a[i].

20/11/2018 Mechatronics and Microcomputers 34

Argument passing with arrays

Same as with pointers.

void confuse(char s[]) {

s[0]='m'; return;

}

int main(int argc, char *argv[]) {

char s[]="hamu";

printf("%s\n",s);

confuse(s);

printf("%s\n",s);

return;

}

„hamu”

„mamu”

„hamu”

„mamu”

20/11/2018 Mechatronics and Microcomputers 35

