


Related concepts

Concepts related to vehicles moving in an environment:

• State estimation

• Localisation

• Mapping

• SLAM (simultaneous localization and mapping)

• Navigation, motion planning

General term describing this field: Robot Mapping



SLAM and related topics

• State estimation: in this context the state to be estimated is 
the position (and orientation) of  the vehicle and the positions of  
the landmarks or other features that are recognized in the 
environment

• Localizaton: determining the position of  the vehicle on a given 
map

• Mapping: bulding a map of  the environment with known vehicle 
positions

• SLAM: simultaneous localization and mapping, vehicle position 
and map is unknown

• Navigation: given a map the vehicle autonomously chooses a 
path and reaches the destination



SLAM introduction

Applications of  SLAM:

• Robot vacuum cleaner and  lawn mower

• UAV

• Explorating mines

• Mars rovers

SLAM algortithms do not tell where the vehicle should go. An additional logic of  
human interaction should guide the robot to explore the whole field. (SLAMP: 
SLAM and Planning)

• 1986: Formulating the problem
• R.C. Smith and P. Cheeseman. On the representation and estimation of  spatial 

uncertainty. International Journal of  Robotics Research, 5(4):56–68, 1986

• 1989: first implementation (with Extended Kalman filter)
• P. Moutarlier and R. Chatila. An experimental system for incremental environment 

modeling by an autonomous mobile robot. 1st International Symposium on Roboti
Experimental cs, Montreal, June, 1989

• 1995: appearance of  SLAM acronym

Dynamic environment

Static environment



SLAM introduction

• Mapping well structured, static, limited regions nowadays are 
considered a solved problem

• No general robust and effective methods for mapping unstructured, 
dynamic, extended regions

• The environment can be represented with:
• Landmark map: using discrete objects (measurement from optical camera)

• Volumetric map:
• Occupancy grid map (2D)

• Surface map (2.5D)

• Full 3D map

• Graphs

• Building the map can be:
• Incremental – online

• Batch, multipass – offline



Difficulties in SLAM

• When observing a landmark again we should recognize that it is 

already registered. Data Association problem

• Usually the environment contains dynamic objects too

• We should distinguish the static and dynamic objects

• Objects that move slowly or rarely pose difficulties

These difficulties let to the topics of SLAMIDE and DATMO

SLAMIDE: SLAM In Dynamic Enviroments

DATMO: Detection And Tracking Of  Moving Objects



SLAM classification

• Grouping by different aspects

• Volumetric or feature based mapping

• Topologic or geometric map

• Static or dynamic environment

• Active of  passive control

• Single or multiple robots

• Probabilistic approach: Bayes estimation (Kalman filter, Particle

filter)

• There are algorithms using graphs



Volumetric vs Feature based map



Volumetric vs Feature based map

• Feature based map

• Needs well defined and easily recognisable landmarks

• Map won’t be detailed

• Volumetric map

• Occupancy grid map: 2 dimensional representations

• Surface map: occupancy grid map with surface elevation data (2.5D)

• Full 3D map: computationally expensive



Mapping with occupancy grid map

• First mesh the region

• Every cell is assigned a probability that measures its occupancy

• The object occupying a cell can be arbitrary

• The resolution of  the mesh should be fine tuned

• Visualization is simple: gradient colors that are proportional to

the probabilitoes

• Make the mesh in a way that the center of  the cells have integer 

coordinates. Round the coordinates of  a newly found object to

integer numbers to immediately get which cell it occupies.



Metric vs topologic map

Metric map

• Direct method

• Needs little preliminary

processing

• Contains geometric features

of  the environment

• Usually realized by occupancy

grid map

Topologic map

• Represents the environment

by the connections between

their regions

• A topologic map is generated

from geometric information

• Usually using graphs



Single or multiple robots

• Multo-robot SLAM poses additional data association problems: maps

generated by individual robots should be combined. Even more 

complicated when the initial relative positions of  the robots were

unknown.

• A possible solution: robots try to localize themselfs in each other’s

maps. This method requires implementing 𝑛2 filters for 𝑛 robots. (B. 

Stewart, J. Ko, D. Fox and K. Konolige. A hierarchical bayesian approach to mobile 

robot map structure estimation. In Proceedings of  the Conference on Uncertainty in AI 

(UAI), Acapulco, Mexico, 2003)

• An other solution: maps are represented by special graphs (Markov 

random fields) which are compared by algorithms using tree structures

(S. Thrun and Y. Liu. Multi-robot SLAM with Sparse Extended Information Filers, 

Robotics Research. Vol.15., pp254-266, 2005)

http://robots.stanford.edu/papers/Thrun03e.pdf


Additional categorization

• Active or passive control: the robot can navigate autonomously or 

can be controlled remotely

• Known correspondence: if  landmarks are labeled it is easier to 

associate the measurements

• Static vs dynamic environment: mapping in a dynamic 

environment is a much harder problem



Notation

• Map of  the environment: 𝑚, vector containing the coordinates

of  the landmarks

• Position of  the vehicle at time 𝑡 is 𝑥𝑡
• Trajectory of  the vehicle is the sequence of  its positions: 

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 that is written as : 𝑥0:𝑡 or 𝑥𝑡

• Sensor measurements at time 𝑡 is 𝑧𝑡
• Control signal at time 𝑡 is 𝑢𝑡. This is not the remote command or

the signal from an algorithm responsible for navigation. In SLAM 

the control signal is a measurement coming from the sensors of  

the vehicle measuring its velocity, orientation, acceleration etc.



The SLAM problem

• The position 𝑥0 defines the starting point of  the robot. This can be an 

arbitrary point. Usually the origin is chosen or a point that defines the position

of  the map to be created in an existing bigger map.

Illustrating the problem:

• The state 𝑥 and map 𝑚

is unkwon

• The measurement 𝑧 and the

control signal 𝑢 is known



Formulating the SLAM problem

• The full SLAM problem is to estimate the vehicle trajectory 𝑥0:𝑡
and the map 𝑚 given 𝑢1:𝑡 and 𝑧1:𝑡 which is determining the

𝑝 𝑥0:𝑡, 𝑚 𝑢1:𝑡, 𝑧1:𝑡
conditional PDF

• Online SLAM: only the actual 𝑥𝑡 position is estimated:

𝑝 𝑥𝑡, 𝑚 𝑢1:𝑡, 𝑧1:𝑡
• The full SLAM problem can be solved with a smoothing

algorithm while the online SLAM needs filtering.

• Smoothing: estimate the current and past values

• Filtering: estimate the current values



Modeling

We need probabilistic approach because the measurements are always

noisy and the models are always inaccurate. We will get distributions of  

the variables in question and from the them we can create point estimates.

• Motion model

• It gives what 𝑥𝑡 state we expect if the previous state was 𝑥𝑡−1 and the

control signal is 𝑢𝑡
• Knowing the motion model is equvalent to specifying the conditional

PDF 𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡

• Measurement model

• It gives what 𝑧𝑡 measurement we expect if the system is at state 𝑥𝑡
• Knowing the measurement model is equvalent to specifying the

conditional PDF 𝑝 𝑧𝑡 𝑥𝑡, 𝑚



Modeling

• The motion or transition model, depending on the sensors, can

be

• Odometric model

• Velocity modell

• The measurement or sensor model can describe

• Distance measurement

• Bearing measurement

• Distance and bearing measurements



SLAM in Bayes-formalism

• The full SLAM problem is to give the

𝑝 𝑥0:𝑡 , 𝑚 𝑢1:𝑡 , 𝑧1:𝑡
conditional PDF

In the following, for brevity the state 𝑥 will contain 𝑚.

• Using Bayes-theorem we have:

𝑝 𝑥0:𝑡 𝑧1:𝑡, 𝑢1:𝑡 =
𝑝 𝑧1:𝑡 𝑥0:𝑡, 𝑢1:𝑡 𝑝(𝑥0:𝑡|𝑢1:𝑡)

𝑝(𝑧1:𝑡|𝑢1:𝑡)

where

𝑝 𝑧1:𝑡|𝑢1:𝑡 = න𝑝 𝑧1:𝑡|𝑥0:𝑡 , 𝑢1:𝑡 𝑝 𝑥0:𝑡|𝑢1:𝑡 d𝑥0:𝑡



SLAM in Bayes-formalism

𝑝 𝑥0:𝑡 𝑧1:𝑡 , 𝑢1:𝑡 =
𝑝 𝑧1:𝑡 𝑥0:𝑡 , 𝑢1:𝑡 𝑝(𝑥0:𝑡|𝑢1:𝑡)

𝑝(𝑧1:𝑡|𝑢1:𝑡)

• 𝑝 𝑧1:𝑡 𝑥0:𝑡 , 𝑢1:𝑡 likelihood, this factor contains the sensor model

• 𝑝(𝑥0:𝑡|𝑢1:𝑡) prior distribution, gives the distribution of  the predicted

state

• 𝑝(𝑧1:𝑡): evidence or marginal likelihood, acts as a normalizing

factor. Can be computed by marginalizing out the state from the

likelihood.

• 𝑝 𝑥0:𝑡 𝑢1:𝑡 , 𝑧1:𝑡 posterior distribution: gives the distribution of  the

state taken into account the measurements

Applying the Bayes formalism is to determine these factors, which is the

hard part of  the problem



SLAM in Bayes-formalism

• In real-time implementation the full SLAM problem becomes

intractable very soon beacuse of  the constantly increasing

dimensionality.

Simplify the problem:

• Assume that the system can be

Modelled by a first order Markov-chain.

The state 𝑥𝑡 depends only on 𝑥𝑡−1 and 𝑢𝑡
• The measurement 𝑧𝑡 depends only

on 𝑥𝑡.

• Online SLAM: estimate 𝑥𝑡 only



SLAM in recursive Bayes-estimation

• We estimate only 𝑥𝑡 the problem can be solved in a recursive way

• Previous estimates won’t be changed or re-estimated when new

measurements arrive

• The first order Markov chain assumption does not require to

recalculate estimations because only the previous state has effect

on the current one. 

With the above simplifications and some formula manipulation we

have the online posterior in the form:

𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡 =
𝑝 𝑧𝑡 𝑥𝑡 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)



SLAM in recursive Bayes-estimation

𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡 =
𝑝 𝑧𝑡 𝑥𝑡 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

In recursive form the factors are:

• 𝑝 𝑧𝑡 𝑥𝑡 sensor model or likelihood

• 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) normalizing factor, given as:

𝑝 𝑧𝑡|𝑧𝑡−1, 𝑢1:𝑡 = න𝑝 𝑧𝑡|𝑥𝑡, 𝑢1:𝑡 𝑝 𝑥𝑡|𝑧𝑡−1, 𝑢1:𝑡 d𝑥𝑡

• 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡 the prior factor assambles as:

𝑝 𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡 = න𝑝 𝑥𝑡|𝑥𝑡−1, 𝑢𝑡 𝑝 𝑥𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1 d𝑥𝑡−1

motion model previous posterior



SLAM in recursive Bayes-estimation

• Computing the integrals is hard, no general analytic solution

exists. We have to approximate.

• In some special cases the problem can be solves exactly. When

dealing with linear systems and normal noise models the Kalman

filter can be used, which gives the optimal solution.

• The normal distribution has two parameters, the expected value

(𝜇) and the covariance (Σ), which describe the distribution

completly. In the recursion this two values represents the PDF.

• In SLAM the motion and sensor models are generally nonlinear

thus the Extended Kalman Filter (EKF) can be used.

• The first SLAM implementation used EKF



EKF SLAM formalism

• The state 𝑥𝑡 contains the position of  the vehicle and the coordinates of  
the 𝑀 landmarks (2M+3 dimension):

𝑥𝑡 = (𝑥, 𝑦, 𝜃,𝑚1𝑥 , 𝑚1𝑦, 𝑚2𝑥 , 𝑚2𝑥 , … ,𝑚𝑀𝑥 , 𝑚𝑀𝑦)
𝑇

• The motion model has 𝑤𝑡~𝒩(0, 𝑅𝑡) additive normal noise:

𝑥𝑡 = 𝑔 𝑥𝑡−1, 𝑢𝑡 +𝑤𝑡

• The senzor model has 𝑣𝑡~𝒩(0, 𝑄𝑡) additive normal noise:

𝑧𝑡 = ℎ 𝑥𝑡 + 𝑣𝑡
• The motion model can be decoupled into two parts: the first part 

describes the vehicle motion and the second part describes the motion
of  the landmarks which is actually standing still.

• The vehicle motion model usually contains trigonometric functions.

• The model is usually nonlinear too.

• For simplicity we assume that the landmarks are labelled.



EKF linearization

• 𝑔(⋅) és ℎ ⋅ functions are linearized (Taylor expansion):

• 𝑔 𝑥𝑡−1, 𝑢𝑡 ≈ 𝑔 𝜇𝑡−1, 𝑢𝑡 + 𝐺𝑡 𝑥𝑡−1 − 𝜇𝑡−1
• ℎ 𝑥𝑡 ≈ ℎ ഥ𝜇𝑡 + 𝐻𝑡 𝑥𝑡 − ഥ𝜇𝑡

• 𝜇𝑡−1 is the expected value of  the previous extimate:
𝜇𝑡−1 = E[𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡 ]

• ഥ𝜇𝑡 expected value of  the prios distribution:
ഥ𝜇𝑡 = 𝐸 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡

• The Jacobians are:

𝐺𝑡 = ቚ
𝜕𝑔 𝑥𝑡−1,𝑢𝑡

𝜕𝑥𝑡−1 𝑥𝑡−1=𝜇𝑡−1

𝐻𝑡 = ቚ
𝜕ℎ 𝑥𝑡

𝜕𝑥𝑡 𝑥𝑡=𝜇𝑡



EKF SLAM

The linearized motion model:

𝑥𝑡 = 𝑔 𝜇𝑡−1, 𝑢𝑡 + 𝐺𝑡 𝑥𝑡−1 − 𝜇𝑡−1 +𝑤𝑡

The linearized measurement model:

𝑧𝑡 = ℎ ഥ𝜇𝑡 +𝐻𝑡 𝑥𝑡 − ഥ𝜇𝑡 + 𝑣𝑡
The usual filtering algorithm read as:

1. ҧ𝜇𝑡 = 𝑔(𝜇𝑡−1, 𝑢𝑡) // 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑧

2. തΣ𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝑅𝑡

3. 𝐾𝑡 = തΣ𝑡𝐻𝑡
𝑇(𝐻𝑡 തΣ𝑡𝐻

𝑇 + 𝑄𝑡)
−1

4. 𝜇𝑡 = ҧ𝜇𝑡+𝐾𝑡(𝑧𝑡 − ℎ( ҧ𝜇𝑡)) // 𝐶𝑡 ҧ𝜇𝑡
5. Σ𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡) തΣ𝑡



EKF SLAM algorithm

Initialization: we have to give the initial distribution from which we can start the
recursion. This means giving two quantities, the expected value (initial position) 
and the covariance (initial uncertainty) of  the state.

• The initial position of  the vehicle can be arbitrary. Typical choice is the origin.

• The positions of  the landmarks are arbitrary too. The chosen values has no 
effect, because at the begining we are infinitely uncertain about these values.

• The vehicle part of  the covariance matrix is a 3×3 block of  zeroes, 
theoretically, since there is no uncertainty about the values we set as the initial
positon. For practical/numerical reasons it is good to introduce some
uncertainty.

• Other parts of  the covariance matrix can be infinitely large, which means we
have no information about the positions of  the landmarks. This is why it
doesn’t matter what initial coordinates we set for the landmarks.



EKF SLAM algorithm

• Initial expected value and covariance:

• The motion of  the vehicle and the landmarks can be decoupled thus we shall not work
with matrices of  dimension 2𝑀 + 3 since it would. No need to waste computational
power on identity operations and multiplications with zero.

• We use block matrices and augment them to 2𝑀 + 3 dimension.

• E.g. compute only those parts of  the 𝐻 matrix that correspond to the actual
observation.

• The matrices that are symmetric in theory are sometimes violate this property beacuse
of  numerical errors. We should force these matrices to be symmetric manually. 

• Alternatively we can use certain computational technics that do not introduce this type
of  error.



Loop closure

• If we would know the landmark positions:

• The vehicle starts and its position becomes more and more uncertain

• Observing a known landmark helps decreasing the uncertainty

• A következő iránypontig újra nő a bizonytalanság

• If the initial positions of  the landmarks are unknown then the uncertainty of  
the vehicle position grows over time and so do the observed landmarks
positions.

• This continues until a landmark is observed a second time when returning to
an already visited place.



Loop closure – illustration



Loop closure – illustration

• We have 8 landmarks on the map. Uncertainties are represented by
ellipses.

• The vehicle starts and the position error grows which causes that the
error in the newly observed landmarks’ positions gets larger and larger.

• Vehicle position error correlates with the landmark position errors.

• A newly observed landmark cannot reduce the position error, sincs 
there is no prior information about where it should be.

• Observing the first landmark the second time causes the errors to
decrease in the vehicle position. This implies the error reduction in all
the landmark positions.

• In one step all the errors decreased. This effect doesn’t go back in time, 
previous vehicle positions won’t get fixed or reestimated.

• All the information accumulates in the covariance matrix.



Visualize uncertainty

• (a) Uncertainty of  a point is visualized by the error ellipse drawn around the
point. The axes are proportional to the variance of  the coordinates. 

• (b) By normalizing the covariance matrix we get the correlation matrix, which
is easy to display. The white band tells us that there is no linear dependence
between the heading of  the vehicle and the positions of  the landmarks.

• (c) Inverse covariance matrix – Precision matrix: while the covariance matrix
shows the unconditional correlation the precision matrix shows partial
correlation. We generally have only local dependencies that can be exploited
for building submaps.

• .



Unknown correspondence

• If  landmarks have no labels we can’t assign measurement to
landmarks with absolute certainty.

• We have to solve the data association problem: the arrived
measurement should be assigned to an already seen landmark or
register a new one?

• Mahalanobis distance helps to decide

• Mahalanobis distance: defines the distance between a point (𝑥)
and a distribution with expected value 𝜇 and covariance Σ:

𝐷𝑀 𝑥 = (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)

• Association: use maximum likelihood method to estimate the
correspondence. We choose the configuration that has minimum 
distance.



EKF SLAM summary

• The EKF is recursive, the information accumulates in the covariance matrix.

• Incremental mapping, can be used in real time.

• Can be used to build feature based/landmark maps

• Landmarks have to be separable from each other.

• Has dimensionality 2M+3

• Computational cost scales quadratically with the number of  landmarks.

• Has limited capabilities in dynamic environment

• Convergence is proven (with linear models and normal noise)

• Can be divergent with nonlinear models

• Gaussian constrain implies that the distribution is unimodalm no alternate
possibilities are taken into account, only the most probable one.

• In extended areas the algorithm gets to be untractable because of  high
dimensionality

• There are other solutons → FastSLAM



Robot motion



Sources

• S. Thrun, W. Burgard, D. Fox (2005): Probabilistic Robotics, The 
MIT Press

• Simo Särkkä (2013): Bayesian Filtering and Smoothing, 
Cambridge University Press

• http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

• A. Doucet & A. M. Johansen (2008): A Tutorial on Particle 
Filtering and Smoothing

• www.cs.ubc.ca/~arnaud/doucet_johansen_tutorialPF.pdf

• M. Montemerlo: FastSLAM: A Factored Solution to the 
Simultaneous Localization and Mapping Problem With Unknown 
Data Association, PhD thesis, School of  computer science, 
Carnegie Mellon University, Pittsburgh, USA, 2003,

http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
http://www.cs.ubc.ca/~arnaud/doucet_johansen_tutorialPF.pdf

