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Linear estimation
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Situation
* We want to know the value of some quantity x
* We have two sensors with different precisions
* Based on the two measurements (Z1, Z,) give a linear estimation of X
* The measurements are corrupted by zero mean Gaussian noise
E[x] =m Elz;] =m Elz;] =m
* The noise STDs are g7 and 0,
Linear estimation: X = a{Z; + a, 2,
Should we use both z or just the one with the smaller 07
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Linear estimation

Budapest University of Technology and Economics

Requirements for a good estimation

* Unbiased: the expectation of the estimated value equals the real value

Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

E[X] = a,E[z] + a,E|z,]

m=am-+a,m

1l=a;+a,

5C\ = A141 + Ay7Z~
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Linear estimation
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Requirements for a good estimation

* Minimum variance: the variance of the estimation should be minimal

Var(%) = E[(X — E[x])?] =

= E[(a;(z; — m) + a,(z, — m))“]
= afE[(z; — m)*] + a3E[(z; —m)?] + 0 =

= a0 +a50%
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Linear estimation
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2 2 2 .2 _ 2.2 2 2
a10-1 ‘|‘a20-2 — alo-l ‘|‘(1 - al) 0-2

Set the dertvative of the variance with respect to ajand a, equal to zero:

dVar(X) 5 5
0 — — 26110'1 — 2(1 — al)o-z
aal
a4 = 0-22 a, = O-%
1 oZ+02 2 02 +0%

X = ai141 + 0B YA)
We give greater weight to the measurement with smaller noise
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Linear estimation
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* Sensors with different * Sensors with same precision
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Linear estimation
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Does the estimated value X have smaller variance than either 0f or g57?

With a4 and a, substituted we have

Which is smaller than either 0§ or o4

(Analogous to parallel resistors)
BLUE: Best Linear Unbiased Estimator

MVUE: Minimum Variance Unbiased Estimator

If the noise 1s Gaussian, then the BLLUE is also minimum variance.
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Linear estimation — with model
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* What if, instead of two measurements we have one measurement
and one predicted value based on some model?

* Let us change the notations:
* Z1 > Xq 1s the prediction
* Zy — Z is the measurement
* Simple example
* Nearly constant velocity motion in a straight line
* We are looking for the position

* We can measure the position with error
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Linear estimation — with model
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Discrete time nearly constant velocity motion
in one dimension:

Xik+1 = X +TU+Wk

T timestep

V: constant speed
° W: noise acting on the motion

° P:noise on the measurements

* Noisy measurements: Zy = X + Uy

* Estimated position: X
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Xo X1 X3 Xi
Zp Zq Z- Z;

Starting from a random position around zero

xO = 0 + WO

Initialize the estimation with the first measurement
ZO = xO + UO
Xo = Zo

—
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Linear estimation — with model
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State observer — Luenberger observer
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Xi+1 = Prxp + Apur + Trwy Xk+1 = PiXp + Apui + Kz — z]

zr = HiXy + Vi 7z = Hyx;.
* Luenberger observer has low performance when noise is
introduced to the system
* Kalman filter: Linear Quadratic Gaussian Estimator
* Linear model
* Quadratic cost function

* (Gaussian noise
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Why quadratic cost?
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* Positive definite: x ' Ax > 0 for every non-zero X

* Symmetric positive definite (SPD) matrices have nice features:
* Positive eigenvalues

* A quadratic form is convex, if A is SPD

* Q(x) = %xTAx —b'x+c

* min (%XTAx —bTx + C) and Ax = b has the same solution
X

2019. 03. 06.




* X is normally distributed random vector: x ~ N (i, X)

* If x describes a signal what is the expectation of the carried
power?

E[llx/IZ] = llull3 + tr(Z)
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Plant block diagram
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Plant and observer
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Simulink Discrete State Space
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Data-related Fusion Aspects

I
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Imperfection Correlation Inconsistency Disparateness
Uncertainty Imprecision Granularity Conflict Qutlier Disorder
Vagueness Ambiguity Incompleteness

2019. 03. 06.

18



Data fusion
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Probability theory (Bayesian inference)
Dempster-Shafer theory (evidential belief reasoning)
Fuzzy set theory (fuzzy reasoning)

Possibility theory  rrm VT rmay—o

Rough sct thCOI‘Y Probabilistic Uncertainty
Random set thCOl’y Dempster-Shafer Uncertainty and ambiguity
Fuzzy Vagueness
X ) Possibilistic Incompleteness
Hybmd fusion Rough set Ambiguity
: FuZZY_I_DS Random set Imperfection

* Fuzzy+Rough set
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Terminology
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* Detection: knowing the presence of an object

* Tracking: Maintaining the state of a moving object over time
using remote sensor measurements. In case of multi-target
tracking the object has to be identified too
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