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Related concepts

Concepts related to vehicles moving in an environment:

• State estimation

• Localisation

• Mapping

• SLAM (simultaneous localization and mapping)

• Navigation, motion planning

General term describing this field: Robot Mapping



Related concepts

• State estimation: in this context the state to be estimated is 
the position (and orientation) of  the vehicle and the positions of  
the landmarks or other features that are recognized in the
environment

• Localizaton: determining the position of  the vehicle on a given
map

• Mapping: bulding a map of  the environment with known vehicle
positions

• SLAM: simultaneous localization and mapping, vehicle position
and map is unknown

• Navigation: given a map the vehicle autonomously chooses a 
path and reaches the destination



Localization

Scenario:

• The map is known

• Vehicle position is unknown

• We can perform measurements that give us information about

the environment

• We have a model of  the vehicle motion and the measurement

process

• Find and track the vehicle on the map



Bayes formalism

• Conditional probability (definition)

𝑃 𝐴 𝐵 ≔
𝑃(𝐴∩𝐵)

𝑃(𝐵)

𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

• Independent events

𝑃 𝐴 𝐵 = 𝑃 𝐴 𝑃 𝐵 𝐴 = 𝑃 𝐵

𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝑃(𝐵)

• Collectively exhaustive events
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Bayes formalism

• Law of  total probabilities:

𝑃 𝐴 =෍

𝑖=1

𝑁

𝑃 𝐴∩𝐵𝑖 =෍

𝑖=1

𝑁

𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)

• Bayes theorem:

𝑃 𝐵𝑘 𝐴 =
𝑃 𝐴 𝐵𝑘 𝑃(𝐵𝑘)

𝑃(𝐴)
=

𝑃 𝐴 𝐵𝑘 𝑃(𝐵𝑘)

σ𝑖=1
𝑁 𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)

Usual terminology:

Posterior: Likelihood: 

Prior: Evidence, marginal likelihood: 

Ω

 B1
A

 B2

 BN

( | )kP B A ( | )kP A B

( )kP B ( )P A



Bayes formalism (notations)

• Position of  the vehicle at time 𝑡 is 𝑥𝑡
• Trajectory of  the vehicle is the sequence of  its positions in time: 

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡 short notation is 𝑥0:𝑡 or 𝑥𝑡

• Environment sensors produce the measurement 𝑧𝑡
• We want to estimate

• 𝑝 𝑥1:𝑡 𝑧1:𝑡 trajectory

• 𝑝 𝑥𝑡 𝑧1:𝑡 actual position



Bayes estimation

𝑝 𝑥𝑡 𝑧1:𝑡 =
𝑝 𝑧𝑡 𝑥𝑡 𝑝(𝑥𝑡|𝑧1:𝑡−1)

𝑝(𝑧𝑡|𝑧1:𝑡−1)

Can be computed in a recursive form:

• 𝑝 𝑧𝑡 𝑥𝑡 likelihood, can be constructed from sensor model

• 𝑝(𝑧𝑡|𝑧1:𝑡−1) evidence or normalizing factor given by the integral:

𝑝 𝑧𝑡|𝑧𝑡−1 = න𝑝 𝑧𝑡|𝑥𝑡 𝑝 𝑥𝑡|𝑧𝑡−1 d𝑥𝑡

• 𝑝 𝑥𝑡 𝑧1:𝑡−1 the prior is given by the time prediction integral:

𝑝 𝑥𝑡|𝑧1:𝑡−1 = න𝑝 𝑥𝑡|𝑥𝑡−1 𝑝 𝑥𝑡−1|𝑧1:𝑡−1 d𝑥𝑡−1

motion model previous posterior



Bayes estimation

• Computing the integrals is hard, generally no analytic solution 

exists thus we need to approximate

• In special cases exact solutions can be given: linear models and 

Gaussian noises leads to the Kalman filter

• In case of  nonliear systems and arbitrary noise models we can use

particle filters to evaluate the filtering equations
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Monte Carlo methods

• Numerical computational techniques

• Construct a random process for the given problem

• Choose an adequate probability distribution

• Do lots of  numerical experiments by sampling the random process

If  a problem can be given a probabilistic interpretation, then it can be 
modelled using random numbers

• Evaluate integrals

• Solve differential equations

• Simulate communication 
systems

• Study population dynamics



Particle filter

Approximating a distribution:

a) Original distribution

b) One Gaussian

c) Gaussian suml

d) Histogram

e) Step (Riemann) approx.

f) Monte Carlo sampling

An arbitrary distribution can be approximated by particles, that are

discrete samples taken from the distribution. Monte Carlo sampling



Particle filter

• Particle filter (PF): recursive algorithm for estimating in the Bayes
formalism.

• Can handle multimodal distributions, no Gaussian noise constrain

• System model can be nonlinear

• Non-parametric estimator, that can approximate a distribution without
a known analytic form

• The distribution is represented by a set of weighted samples (particles)

• The method is effective when the samples are choosen properly

• How to generate particles?
• The function to be determined is the a posteriori which is unknown, can't

sample from that

• We choose an other function that can be sampled and does not differ much

• The weights take the differences into account

• We can always sample from a uniform distribution but it is not effective



Importance weights

• Function 𝑓 should be approximated, but cannot be 
sampled

• Instead we sample 𝑔, which is called the 
importance density

• Every particle 𝑥 gets weighted by the factor 
𝑓(𝑥)

𝑔(𝑥)

• In Bayes estimation 𝑓 is the posterior and 𝑔 is the 
prior

• In the simplest case (bootstrap particle filter) the 
weights are the likelihoods, which is given by the 
sensor model 𝑝 𝑧𝑡 𝑥𝑡

• If  𝑔 and 𝑓 are similar then the weights differ little

• Try to choose an importance density that minimizes 
the variance of  the weights



Bootstrap particle filter

One recursion step:

1. Input: 𝑥𝑘−1
(𝑖)

, 𝑧𝑘 , 𝑖 = 1…𝑁

2. Sample from the prior: 𝑥𝑘|𝑘−1
(𝑖)

~𝑝 𝑥𝑘 𝑥𝑘−1

3. Importance weights: 𝑤𝑘
(𝑖)

= 𝑝 𝑧𝑡 𝑥𝑘|𝑘−1
(𝑖)

4. Normalize weights: σ𝑖=1
𝑁 𝑤𝑘

(𝑖)
= 1

5. Resample 𝑁 times with replacement from the prior pool 

𝑥𝑘|𝑘−1
(𝑖)

. Each particle is drawn with probability equal to its 

weight.

6. Output: 𝑥𝑘
(𝑖)



Difficulties in particle filtering

• Curse of  dimensionality

• As the state space grows the number of  particles needed to cover it 

grows exponentially

• The likelihood function becomes a narrow spike and most of  the 

particles will have negligible weight

• Particle degeneration

• We want to approximate a continuous PDF but in the resampling step 

we draw particles from a discrete pool. We need to introduce some 

variance.

• Precise measurement

• It also causes a narrow likelihood function. Can happen that all particle 

will get zero weight.



Dealing with difficulties

• In case of  noise free sensors (lidar) add artificial noise to the

measurements

• Resample only when the effective sample size is under a treshhold

𝑁𝑒𝑓𝑓 =
1

σ(𝑤𝑖)
2

• After resampling perform kernel density estimation

• Epanechnikov kernel is optimal in a mean square error sense



References

• Robot Mapping: course at University of  Freiburg (online 

videos) http://ais.informatik.uni-

freiburg.de/teaching/ws13/mapping/

• Probabilistic Robotics (Sebastian Thrun, 2006): book

http://www.probabilistic-robotics.org/
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