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Event algebra

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Basic concepts

Sample space (£2): set of all possible events
Elementary events (w): disjoint events with a single outcome

Set of events F: some or all subsets of €, that is the power set of €2:

F € 2% and an algebra defined on it (o-algebra)

Events (A, B, ... ): subsets of F, can be elementary or complex
Probability measure P: F—|[0,1]: real valued additive function
An event has probability: e.g. P(A), P(1A4), P(A N B) etc.
Certain event: P({)) = 1, impossible event: P(@) = 0

The triplet (£}, F, P) defines a probability space

2019. 02. 27.



Event algebra — example

Budapest University of Technology and Economics
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Dice Roll

Sample space (2): {1,2,3,4,5,6, even, odd, >3, etc}
Elementary events (w): {1,2,3,4,5,6}

Set of considered events (F): eg.: {0,1,2,3,4,5,6, even}
Events (4, B, ... ): {2, even, greater than 3 and odd, 4&5, etc}

Probability measure P: F—[0,1]: “favorable cases/possible cases” (Laplace)

An event has probability: e.g. P(4), P(=A), P(A N B) etc.
Certain event: P({)) = 1, impossible event: P(@) = 0
The triplet (£}, F, P) defines a probability space

2019. 02. 27.
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Event algebra — conditional probability

Budapest University of Technology and Economics
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* Conditional probability (definition)

)
P(A|B) = P(I;“(Qf)
P(ANB) = P(A|B)P(B) = P(B|A)P(A)
* Independent events ‘
P(A|B) = P(A) és P(B|A) = P(B)

P(ANB) = P(4)P(B)

* Collectively exhaustive events

N
B; =Q B;NBj=0
i=1

2019. 02. 27.



Correlation and causality

Budapest University of Technology and Economics
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* Consider two events A and B \;nth the followmg inequality
P(B|A) > P(B|—4)

e What does it indicate?
Dice roll example: B =< 6 >, 4 =< even >

P(<6>)=1/6 P(< even >) =%

P(BNA) _ 1/6
P(4A)  1/2

LHS P(B|A) =

1
=3 as expected

2019. 02. 27.



Correlation and causality
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A B
RHS P(B|-A) = Pff( j;;‘” 03 Crihp

P(B)-P(BNA) 1/6-1/6 ,
— =0 cannot roll 6 and odd at the same time
1-P(A4) 1-1/2

* 'The inequality P(B|A) > P(B|—A) seems to indicate that event A increases the
probability of event B and there i1s an asymmetric relation between them

* The relation is symmetric actually

J
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Correlation and causality
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WELL, GENTS! IT UHHH... YOUR GOOD THING THAT
LOOKS LIKE OUR CHART'S LIPSIDE DIDN'T CHANGE
PROFITS ARE ON DOWN . ANYTHING!

THE RISE!

Y
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| Cyanide and Happiness © Explosm.net |

 P(B|A) > P(B|—=A) and P(A|B) > P(A|—=B) implies the same, symmetric relation:

* Events A and B are correlated but no casual relation can be read out from these inequalities

* FEither there is a causal relation between A and B or there is 2a common cause

* Think about: smoking — yellow finger tips — lung cancer, water level in Venice - price of bread in L.ondon

2019. 02. 27.




Monty Hall problem
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Monty Hall problem

the prize is behind door

1

2

3

1/3

1/3

1 Hall opens Hall opens Hall opens
8 door 2 or 3 door 3 door 2
O
o
% 2 Hall opens Hall opens Hall opens
o door 3 door 1 or 3 door 1
[
=3
O
> 3 Hall opens Hall opens Hall opens
door 2 door 1 door 1 or 2

2019. 02. 27.

1/3

Car
location:

Door 3

Host
opens:

Door 3

Door 2

Total
probability:

1/6

1/6

1/3

1/3

Stay:

Car

Car

Goat

Goat

Switch:

Goat

Goat

Car

Car



Monty Hall problem

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

: : 1 2
* So we are better off changing our mind: 373

3
* But why not 50-50%7

* The situation when the host opens a door in
advance and you choose from the two remaining
doors 1s the same or not?

* Not the same, because the action of the host
depends on our choice

* The host tells us information by opening a door

2019. 02. 27.
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Bayes-theorem

Budapest University of Technology and Economics
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* Law of total probabilities :

N N ‘
P(A) = ) P(ANB) = ) P(A|B)P(B;) 'ﬂ.’ ~
i=1 i=1 .-

* Bayes-theorem
P(A|By)P(By)  P(A|By)P(By)

P(B|4) = =
P(A) i=1 P(A|B;)P(B))
Usual terminology
Posterior: P(By|A) Likelihood: P(A|By)
Priot: P(By) Evidence, marginal likelihood: P(A)

—



Budapest University of Techn

Bayesian inference
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gineering and Vehicle Engineerin

Application ot the Bayes-theorem for hypothesis testing

* We have a prior probability, that hypothesis H is true: P(H)

* We observe an event E | which 1s the evidence or observation and

associate the probability: P(E)
* The likelihood that E happens given H is true is: P(E|H)
* The posterior probability that H 1s true 1s given by

P(H|E) =

P(E[H)P(H) P(E|H)P(H)

P(E)

~ P(E|H)P(H) + P(E|=H)P(=H)

2019. 02. 27.



Hypothesis test — loaded coin

Budapest University of Technology and Economics
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Someone is tossing a coin in the next room and tells us the results

We have two hypotheses
The coin is loaded and produces < heads > with 70% (L)
The coin is fair and does 50% — 50% (—L)

We give probability Py(L) that the coin is loaded (at the beginning)
Based on what we hear, how shall we change our belief?
The probabilities of the outcomes conditioned on the hypotheses are:
P(<heads > |L) =0.7 P(<tails>|L)=0.3
P(< heads > |-L) = 0.5 P(<tails>|—-L) =0.5

—|
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Hypothesis test — loaded coin
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*  Say the first toss gives < heads > which results in:
P;(L) = Py(L| < heads >)

Py(< heads > |L)Py(L)
Py(< heads > |L)Py(L) + Py(< heads > |=L)Py(—L)

P1(L) =

0.7P,(L)
0.7Py(L) + 0.5(1 — Py (L))

P1(L) =

* If we would have < tails > instead:

Py(< tails > |L)Py(L)
Py(< tails > [L)Py(L) + Py(< tails > |=L)Py(—L)

P1(L) —

0.3Py(L)

P(L) = 0.3P,(L) + 0.5(1 — Py(L))

2019. 02. 27.




Hypothems test —loaded dice

m

y f Trcm

With a concrete prior behef PO (L) 02
* 1. outcome: < heads >

P.(L) = 0.7 X 0.2 _0.9¢
T 07%x02405%x(1—-02)

1. outcome: < tails >:

P (L) = 0.3 X 0.2 o012
T 03%x02405%x(1-02)

2019. 02. 27.



Hypothesis test — loaded dice
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If we get two < heads > in a row:
P,(L) = P;(L| < heads >)

P.(L) = 0.7 X 0.26 _ 033
YT 07%x026+05% (1—0.26)

* The second evidence also increases our belief but with a smaller amount
* This is a recursive process where we use the last result as prior

* We can have more than one concurrent hypotheses about a parameter (or a
variable)

* In fact we can have continuously many hypotheses (from a parameter space or
a state space)

2019. 02. 27. 16 J




Binomial distribution

Budapest University of Technology and Economics
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* The probability to get k success from n trials is .| S
ny g - |
. — _ n—k -
° p is the probability of one trial to succeed
* k is the free variable N T -
(¢:-1+.£:p)l = i + 2
n! I
= is the binomial coefficient .
(k) k!(n—k)! @)’ = + 3 o+ 3 o+ B

X

(a+b) = + 4a’m + 6a’b® + 4dab® + p°

* Pronounce: n choose k

* You can choose k out of n that many ways

2019. 02. 27.




Binomial distribution
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Normal p.d.f.
e Coin ﬂlp = Binomial p.m.f.

° 0 trials 0'25_
* Getting 3 heads and 3 tails is the most i :1:

probable outcome *
* Increasing the number of trials will produce l

Gaussian-like histogram b

C



Central limit theorem

EEsssssssssssssssssnmmmmm Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

%% Central 1limit theorem
o
O

Dice roll
= led;

3

R = sum(round(6*rand(n))) ;
histogram (R)

Tossing a coin n times and getting k heads

. https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability hu.html

2019. 02. 27.
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Normal distribution

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* s the limit of the o
* Binomial distribution: B(k;n,p) = N(k;np,np(1 —p)) <.
* Poisson distribution: P(k; 1) = N(k; A, 1) |
* Chi-squared distribution: y*(k) — N(k, 2k) e |

* Generally, the sum of independent, identically distributed random variables
tends toward a normal distribution

* For a given mean and variance this is the maximum entropy distribution

* It is the least informative distribution
* It minimizes the information that we assume to be there
* Physical systems generally move towards equilibrium, that is maximum entropy state

* It has nice mathematical properties

2019. 02. 27.




EEsssssssssssssssssnmmmmm Budapest University of Technology and Economics
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* [rjabeaze

2019. 02. 27.

Normal distribution

Department of Control for Transportation and Vehicle Systems

f(z;p,0%) = ! e_%(mf_’uy.

o\/2r

68-95-99.7 Rule

u—=30 u—-20 U—-o 3 Uu+o u+20 U+ 30

21



Create Gaussian noise

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* Usually we have a random number generator

* We can generate a random number 1in the interval 0...1

.. i 1
* The standard deviation is Newi

* The mean 1s 0.5
Algorithm
1. Add 12 random numbers (U = 6,0 = 1)
2. Subtract6 (u =0,0 = 1)
5. Multiply by the desired STD
4. Add the desired mean

2019. 02. 27.

X = sum(rand (12, 1led));
X = X - 0;
X =X * 3;
X = X + 8;

histogram(x, 'normalization
", 'pdfl)

hold on

t = (-
3*sigma:0.1:3*sigma) +mu;
plot (t, normpdf (t,8,3))

—|
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Gaussian vs White noise

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* Gaussian noise and white noise are not synonyms
* Gaussian refers the distribution of the amplitude

* White means that the values are not correlated in time. The intensity 1s
the same at all frequencies and the PDF can be any

* A random signal can be white and Gaussian
* 'This is a desired property
* Tractable analytic models

* Good approximation of real-world situations

* Additive White Gaussian Noise (AWGN)

2019. 02. 27. 23




Multivariate normal distribution

Budapest University of Technology and Economics
Faculty of Transportation Engin g and Ve h cle Engin g
De p m t of Control for T p and Vehicle Systems

* Joint and multivariate distributions are
synonyms

f&x) = f(xl,xz, k)

T — 1 Muliarite Normal Distibution
exp(my (X ax—u o
\/ (2m)k det(X) P ( 2 ( ) =

2019. 02. 27.



Modelling uncertainties

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

Additive noise acting on the motion and sensor model
X+1lk = S (i) + wy
2 = hie(Xp) + v
random deterministic random
How do we create probabilities from these random variables?

Since X and Z are usually continuous variables, the probabilities of
taking specific values are zero.

However, X and Z residing in some region S and T have nonzero

probabilities
P(Xp+1)k € S[xk) P(zy € T|x)

2019. 02. 27.
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Modelling uncertainties

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* The probability mass is given by integrating the probability density over a region

P(Xp+1jk € S|xx) = f p(x|x;)dx P(zy € T|xy) = J p(z|x;)dz
S

T
* p(x|xy) is the probability density function associated to the uncertain motion model

* p(z|xXg) is the probability density function associated to the uncertain sensor model
* If the additive noise is zero mean Gaussian

p(xIxx) = V(% fie (Xe), 0%)
* Similarly for the sensor model
p(zlxx) = NV (z hye (Xg), 0%)

2019. 02. 27. 26 J




Hidden Markov model (HMM)

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

* In the context of state estimation (robotics) the value to be
estimated 1s the state (or state vector in general) of an object or
an ensemble of objects

* The state in unknown to us (hidden) and possibly evolves in time:
the system has dynamics

* We can observe the system and obtain a limited amount of

information, for example @ e

Partial observation of the state

Noisy measurements
Zk—1 Z
ﬁJ
2019. 02. 27. 27




Markov assumptions

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

* The current state depends only on the previous state

p(xklxk—lek—Zi "'JXO) — p(xklxk—l)

* The measurement depends only on the current state

2019. 02. 27.

p(Zy

X, Xk—1, > X0) = P(Z|Xk)

28



Recursive Bayesian estimation (in discrete time)

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* HEstimate the state vector at timestep K using measurements up to k:

P (Z X)) (X |Z1:k—1)
P(Zk|Z1:k-1) P(Byl|A) =

* The denominator is constant and can be expressed as

P(A|Bx)P(Bx)  This was the
N (P(A|B)P(B;) Bayes-theorem

P(Xglz1x ) =

P(2e|zir ) = f D (2 [%10) P (X |21 )X

* The prior, with the help of a model of the system is obtained from the pervious
posterior through the time-prediction integral (Chapman-Kolmogorov integral):

D (k|11 = j P e |Kee1) PCRiemr 2101 ) Xpes

motion model previous posterior

2019. 02. 27. 29




Accuracy, precision

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

The quality of a sensor can be described Reference value

A

. . . Probability Accuracy
by its precision and accuracy density

* Accuracy

* Measures the systematic error (bias)

[

4l

* Related to the mean of the measurement “Precision AU
* Precision

* Measure the random error (variability)

* Related to the variance (standard deviation)
of the measurement

2019. 02. 27.
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Terminology in estimation

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

e Statistic: a function of the data

e Hstimator: a function of the data that intends to describe some
property ot the undetrlying distribution

A statistic i1s not good or bad( or biased or unbiased). It 1s just a function

An estimator can be good (unbiased, minimum variance etc.). E.g.: the sample
mean is an unbiased estimator of the expected value

* Filtering: estimate X; based on measurements Z;.¢
* Prediction: estimate X¢; based on measurements Z.¢

* Smoothing: estimate X;_; based on measurements Zq.¢

2019. 02. 27. 31




Metric — Euclidean

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

Calculate “real distance” from coordinate differences

* Distance of two points in 3D: d(Py, P;)

d(Py, P;) = \/(x1 —x3)% + (Y1 —y2)% + (21 — 2,)°

Euclidean metric (in Cartesian coordinates)

Are there other ways to get a distance?

2019. 02. 27.
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Metric — Polar

EEsssssssssssssssssnmmmmm Budapest University of Technology and Economics
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Polar coordinate system 1200 | 60" Y
* X =TCOSQ 0% -
* y =rsin AT T s :
y = P LN =
210° ' ' 3300 5
240"’ 300° L [l _
270° 7 COS (¥ X

We can also have
cylindrial, toroidal, etc , _ \/rlz 12— 2rm cos(pr — o) 4= VG xDE+ 01— 7202
coordinate systems

2019. 02. 27. 33




Metric

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

You can make up and use any metric 1if it is meaningful in a way

Metric 1s not just to calculate a physical distance, it can be any
“distance” that is useful

A typical application is to measure the error between some true and
measured or estimated quantities (e.g. a signal or a state vector)

Distance between states: error metric

N\

X = [x,vy,y,vy] X = [X, 0, Y,y

d(x,X) =?

2019. 02. 27. 34 J



RMS — Root Mean Square

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* The voltage 1n the wall 1s 230V, which 1s the )

0.707a - = -4~ - - —--N--------- e

etfective value of the alternating sinusoidal e e
signal. v | |

* This 1s the RMS value of a sinusoidal signal
that has 325V peak voltage. N "

* Sometimes we want to describe a signal with
a single number to be able to easily compare
them.

* Common choices: maximum (minimum)
value, average value, RMS wvalue.

2019. 02. 27. 35




RMS — Root Mean Square

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Computing the RMS of a signal in the time domain results the
same as computing it in the frequency domain.

The RMS wvalue 1s invariant to the Fourier transtform

A method to verify the result of a FFT
It 1s a property of a physically existing signal, not just a property
of the chosen representation

It indicates the energy carried by the signal
In the context of electricity V_RMS?/RESISTANCE is the power

2019. 02. 27. 36



Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

1 1
XRMS = \/; (X + x5 + - xp) = \/;Z?ﬂxiz

1 1 A
XRMSE = \/; (ef +e3 +-ep) = \/;Z?ﬂ(?ﬁ — X1);
Sometimes RMS and STD are synonyms
Mean squared deviation (error) is the square of RMSE

2019. 02. 27.
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* X is normally distributed random vector: x ~ N (i, X)

* If x describes a signal what is the expectation of the carried
power?

E[llx/IZ] = llull3 + tr(Z)

2019. 02. 27.
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Mahalanobis distance

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* What is the distance of a point to a
distribution

* Is this a meaningtul question?

* Buclidean distance is always an
option between points, but what
point represents the distribution?

* The mean!

* Should we consider the variance-
covariancer

2019. 02. 27.
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Multivariate OQutlier Example

E * o +
: -t
________________ TS BT IR PP I oS SRS SN
+ f;"oo‘ -
-
* 0:& ")‘“' -
5t &
:%’ e’ oy
............................................. ; % &Q"'“
'{ : 0;} i’“”’
* ¢ L/ ‘i ro‘go:'og’
T S ’ﬁ“?‘;}' *
......................... ’,g"', S O
‘Oz *, PR
*:‘:0’- 3 ‘
00*0‘*':“
............................. e e
» : i
5
i
-3 2 1 0 1 2 3

Variable 1



Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Mahalanobis distance

Department of Control for Transportation and Vehicle Systems

% Generate a two dimensional Gaussian | | |
n = 163,’ 24
Mu = [10;20];
Sigma = [3, 2; 2, 31; =
x = mvnrnd (Mu, Sigma, n); 2

21r
plot(x(:,1),x(:,2),"'k.") 0 b )
hold on; axis equal ol
% Plot a circle around the centre ’
(mean) with radius 2 or .
r = 2; 17 F
cx = r * cos(0:0.01:2*%p1) + Mu(l); I
cy = r * sin(0:0.01:2*pi) + Mu(2); L ’ L
plot(cx,cy, '"b=", "LineWidth',1.5) p . .

2019. 02. 27.
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Budapest University of Technology and Economics

Mahalanobis distance

Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation

% 45 deg line
plot ((=5:5)+Mu(l), (-5:5)+ Mu(2), 2l
'g', 'LineWidth',1.5)

o

s Mean

plot (Mu(l),

% Points at 45 and 135 deg
plot (r*cos (pi/4)+Mu (1),
r*sin(pi/4)+Mu(2), 'r.
plot (r*cos (pi*3/4)+Mu(l),
r*sin(pi*3/4)+Mu(2),'r."', '"MarkerSize', 32)

Mu(2),'k.', 'MarkerSize',32) ol

25

23r

21r

19
18
17

', '"MarkerSize', 32)
16

15

These points are equally distant to the origin (regarding Fuclidean metric)
But one of the seems to outlie more than the other

We should include the variances when calculating the distance!

2019. 02. 27.
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Mahalanobis distance

Budapest University of Technology and Economics
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* Fuclidean distance: d = \/ (x — u,)? + (y — .uy)2

*  Vectorized form: d = \/(X —wW)'x—p) withx=[x,y]"and u = [,ux,ﬂy]T

N2
*  Weighted Euclidean distance: d = (x ”x) + (

*  Vectorized form: d = [(x — )T [

2019. 02. 27.

Ox

-1
Gxo 0_1] (x— )

Oy

Inverse of the covariance matrix

Y—Uy

Oy

)

2 Equation of
an ellipse
(scaled by d)

23

21

20

18

16

42




Mahalanobis distance

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* The ellipse is the unit circle when the metric 1s the
Mahalanobis distance

* General case (when rotated):

24

d=&x-—m)E 1 x—p |
* Weighted scalar product: 20
x—w'Z (x—p

* The weight is inversely proportional to the variance: the
greater the uncertainty the less we take the difference into |
account

* The Euclidean metric uses no weighting (identity matrix)

* You can make up any metric of this kind by inserting a
positive definite matrix as weight. (2 is PSD, it can be
singular!)

2019. 02. 27.



Classification with Mahalanobis distance

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

Say we have 3 categories described by the distributions: N (u;, Z;). The point x have the following
distances from the distributions:

D12 = (x— .111)TS1_1 (x — uy)

Dz2 = (x - .Uz)TSz_1 (x — uyp)

Df = (x—p3)' S5 (x — p3)
To create probabilities from the distances we should normalize them. The normalization factor 1s
7 =eDi 4 e D4 D5

and the probability of x belonging to category I 1s

2019. 02. 27.

44



Slope
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e For a straicht line .
S e For a curved line

tangent line

slope= f'(x)

2019. 02. 27.



Linear regression

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

MATLAB: mldivide a, a, - a, \x ) (1)

* Solve systems of linear equation: Ax = B

'\ﬂ?f.l a, ceod xu A g\J."” g

N, M.

* Can be an overdetermined system

More data points than variables. In this case the solution is given by least-squares method

* Usage: x=mldivide(A,B) or x=A\B

* Use to fit a line to data points
* We have X = [X1, X5, ... Xp] and ¥ = [y1, V2, - V]
* Wewant to fitaline: y =mx + b

* Now we have x and y and the unknown is m

L 1 L 1 L L 1 L
28 -10 10 20 30 40 50 60
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Linear regression

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Inhomogeneous

Homogeneous
cy=mx > xm=y
* Usage: m=x\y

- ¢ =tan"1m

Linear regression: y = mur
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cy=mx+b > xm+b=y
X = [x,1]
* Usage: mb=X\y

* m=mb(1l); b=mb(2)

Linear regression: y = max + b
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Covariance
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Fit a line
Determine the slope

Compute covariance
© cov(x,y)

Play with the parameters:
* Number of data points (1e2)
* Range (200)
* Noise magnitude (15)
* Coetficient of x (2)
What are their etfects?

2019. 02. 27.
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% Noisy data points

n = le2;

X = linspace(1,200,n)"';

y = 2*x +100 + 15*randn(size(x));

figure
hold on; box on
plot(x,y, '0o")

% Fit a line: y = m*x+b
X = [x,ones(size(x))];
mb = X\y

m=mb(1); b = mb(2);

fi = atan(m)

plot(x,m*x + b, 'r")
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e Fit a line ﬁ Toizg.data points
* Determine the slope x = linspace(1,100,n)"';
y = 2*¥x + 100 + 15*randn(size(x));

* Compute covariance

© cov(X,y) figure

hold on; box on
: plot(x,y, 0")

* Play with the parameters:

* Number of data points: no effect % Fit a line: y = m*x+b
. . X = [x,ones(size(x))];

* Range: increases covariance mb = X\y

* Noise magnitude: no effect m=mb(1); b = mb(2);

* Coefficient of x: increases covariance |fi = atan(m)
. plot(x,m*x + b, 'r")
e What does covariance measure? ’ ’
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Covariance
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* The definition is:
cov(X,Y) = E[(X — E[XD(Y — E[Y])]

* For concrete data points the discrete formula is:

n

1
cov(x,y) = EZ('XL' — X))y —y)
i=1

* The rangeof x and y1sinx; —xandy; —y
* The coefficient of x effects the range of y

2019. 02. 27.
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Correlation

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

* 'To measure the pure connection between X and y we need to

normalize the covariance with the range

* This way we create a measure that is independent of the chosen units.

Scale independent
* Definition:

cov(x,y)  cov(x,y)

Jvar(x)var(y) - Ox 0y

r = corr(x,y) =

2019. 02. 27.
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Correlation
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* The greater the correlation the more X can explain y

* 1: maximal correlation
* (: no correlation

* -1: maximal anticorrelation
1 measures what proportion
in the variance of Yy can be

explained by x:

0<p <+1

-1< p <0

e var(e) = (1 — r?)var(y)
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Slope vs correlation
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* The slope and the correlation are the same, it g, = 0y,

tan ¢ =m = corr(x,y)

\

var(y) 0y
var(x) ’ Oy

* The closer the correlation to one the more pertect the linear relationship

* The slope does not contain this information

* The slope tells how much y changes with x

* The correlation does not contain this information

* If we swap x and y the correlation remains
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— But the signs are the same

the same but not the slope!



