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Event algebra

Basic concepts
• Sample space (Ω): set of  all possible events

• Elementary events (ω): disjoint events with a single outcome

• Set of  events 𝑭: some or all subsets of  Ω, that is the power set of  Ω: 
𝐹 ⊆ 2Ω and an algebra defined on it (σ-algebra)

• Events (𝑨,𝑩,… ): subsets of  𝐹, can be elementary or complex

• Probability measure 𝑃: 𝐹→[0,1]: real valued additive function

• An event has probability: e.g. 𝑃(𝐴), 𝑃(¬𝐴), 𝑃(𝐴 ∩ 𝐵) etc.

• Certain event: 𝑃(Ω) = 1, impossible event: 𝑃(∅) = 0
• The triplet (Ω, 𝐹, 𝑃) defines a probability space
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Event algebra – example

Dice Roll

• Sample space (Ω): {1,2,3,4,5,6, even, odd, >3, etc}

• Elementary events (ω): {1,2,3,4,5,6}

• Set of  considered events (𝑭): eg.: {∅,1,2,3,4,5,6, even}

• Events (𝑨,𝑩,… ): {2, even, greater than 3 and odd, 4&5, etc}

• Probability measure 𝑃: 𝐹→[0,1]: “favorable cases/possible cases” (Laplace)

• An event has probability: e.g. 𝑃(𝐴), 𝑃(¬𝐴), 𝑃(𝐴 ∩ 𝐵) etc.

• Certain event: 𝑃(Ω) = 1, impossible event: 𝑃(∅) = 0

• The triplet (Ω, 𝐹, 𝑃) defines a probability space
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Event algebra – conditional probability

• Conditional probability (definition)

𝑃 𝐴 𝐵 ≔
𝑃(𝐴∩𝐵)

𝑃(𝐵)

𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)

• Independent events

𝑃 𝐴 𝐵 = 𝑃 𝐴 é𝑠 𝑃 𝐵 𝐴 = 𝑃 𝐵

𝑃 𝐴∩𝐵 = 𝑃 𝐴 𝑃(𝐵)

• Collectively exhaustive events

ራ

𝑖=1

𝑁

𝐵𝑖 = Ω 𝐵𝑖 ∩ 𝐵𝑗= ∅

B

Ω

 A
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Correlation and causality

• Consider two events 𝐴 and 𝐵 with the following inequality

𝑃 𝐵|𝐴 > 𝑃(𝐵|¬𝐴)

• What does it indicate?

Dice roll example: 𝐵 =< 6 >, 𝐴 =< even >

𝑃 < 6 > = 1/6 𝑃 < even > =
1

2

LHS 𝑃 𝐵|𝐴 =
𝑃(𝐵∩𝐴)

𝑃(𝐴)
=

1/6

1/2
=

1

3
as expected
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Correlation and causality

RHS 𝑃 𝐵|¬𝐴 =
𝑃(𝐵∩¬𝐴)

𝑃(¬𝐴)

𝑃 𝐵 −𝑃(𝐵∩𝐴)

1−𝑃(𝐴)
=

1/6−1/6

1−1/2
= 0 cannot roll 6 and odd at the same time

• The inequality 𝑃 𝐵|𝐴 > 𝑃(𝐵|¬𝐴) seems to indicate that event 𝐴 increases the 

probability of  event 𝐵 and there is an asymmetric relation between them

• The relation is symmetric actually
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Correlation and causality

𝑃 𝐵|𝐴 > 𝑃(𝐵|¬𝐴)

𝑃 𝐴 ∩ 𝐵

𝑃(𝐴)
>
𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

1 − 𝑃(𝐴)

𝑃 𝐴 ∩ 𝐵 1 − P A > 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 P(A)

𝑃 𝐴 ∩ 𝐵 > 𝑃 𝐴 𝑃(𝐵)

• 𝑃 𝐵|𝐴 > 𝑃(𝐵|¬𝐴) and 𝑃 𝐴|𝐵 > 𝑃(𝐴|¬𝐵) implies the same, symmetric relation:

• Events 𝐴 and 𝐵 are correlated but no casual relation can be read out from these inequalities

• Either there is a causal relation between 𝐴 and 𝐵 or there is a common cause

• Think about: smoking – yellow finger tips – lung cancer, water level in Venice - price of  bread in London
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Monty Hall problem
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Monty Hall problem
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Monty Hall problem

• So we are better off  changing our mind: 
1

3
→

2

3

• But why not 50-50%?

• The situation when the host opens a door in 

advance and you choose from the two remaining 

doors is the same or not?

• Not the same, because the action of  the host 

depends on our choice

• The host tells us information by opening a door



Bayes-theorem

• Law of  total probabilities

𝑃 𝐴 =෍

𝑖=1

𝑁

𝑃 𝐴∩𝐵𝑖 =෍

𝑖=1

𝑁

𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)

• Bayes-theorem

𝑷 𝑩𝒌 𝑨 =
𝑷 𝑨 𝑩𝒌 𝑷(𝑩𝒌)

𝑷(𝑨)
=

𝑷 𝑨 𝑩𝒌 𝑷(𝑩𝒌)

σ𝒊=𝟏
𝑵 𝑷 𝑨|𝑩𝒊 𝑷(𝑩𝒊)

Usual terminology

Posterior: 𝑃(𝐵𝑘|𝐴) Likelihood: 𝑃(𝐴|𝐵𝑘)

Prior: 𝑃(𝐵𝑘) Evidence, marginal likelihood: 𝑃(𝐴)

Ω

 B1

B2

Bi

A
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Bayesian inference

Application of  the Bayes-theorem for hypothesis testing

• We have a prior probability, that hypothesis 𝐻 is true: 𝑃(𝐻)

• We observe an event 𝐸, which is the evidence or observation and 

associate the probability: 𝑃(𝐸)

• The likelihood that 𝐸 happens given 𝐻 is true is: 𝑃(𝐸|𝐻)

• The posterior probability that 𝐻 is true is given by

𝑃 𝐻 𝐸 =
𝑃 𝐸|𝐻 𝑃(𝐻)

𝑃(𝐸)
=

𝑃 𝐸|𝐻 𝑃(𝐻)

𝑃 𝐸|𝐻 𝑃 𝐻 + 𝑃 𝐸|¬𝐻 𝑃(¬𝐻)
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Hypothesis test – loaded coin

• Someone is tossing a coin in the next room and tells us the results

• We have two hypotheses

• The coin is loaded and produces < heads > with 70% (𝐿)

• The coin is fair and does 50%− 50% (¬𝐿)

• We give probability P0 𝐿 that the coin is loaded (at the beginning)

• Based on what we hear, how shall we change our belief?

• The probabilities of  the outcomes conditioned on the hypotheses are:

𝑃 < heads > 𝐿 = 0.7 𝑃 < tails > 𝐿 = 0.3

𝑃 < heads > ¬𝐿 = 0.5     𝑃 < tails > ¬𝐿 = 0.5
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Hypothesis test – loaded coin

• Say the first toss gives < heads > which results in:

𝑃1 𝐿 = 𝑃0 𝐿 < heads >

𝑃1 𝐿 =
𝑃0 < heads > 𝐿 𝑃0(𝐿)

𝑃0 < heads > 𝐿 𝑃0(𝐿) + 𝑃0 < heads > ¬𝐿 𝑃0(¬𝐿)

𝑃1 𝐿 =
0.7𝑃0(𝐿)

0.7𝑃0 𝐿 + 0.5(1 − 𝑃0(𝐿))

• If  we would have < tails > instead:

𝑃1 𝐿 =
𝑃0 < tails > 𝐿 𝑃0(𝐿)

𝑃0 < tails > 𝐿 𝑃0(𝐿) + 𝑃0 < tails > ¬𝐿 𝑃0(¬𝐿)

𝑃1 𝐿 =
0.3𝑃0(𝐿)

0.3𝑃0 𝐿 + 0.5(1 − 𝑃0(𝐿))
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Hypothesis test – loaded dice

With a concrete prior belief: 𝑃0 𝐿 = 0.2

• 1. outcome: < heads >:

𝑃1 𝐿 =
0.7 × 0.2

0.7 × 0.2 + 0.5 × (1 − 0.2)
= 0.26

• 1. outcome: < tails >:

𝑃1 𝐿 =
0.3 × 0.2

0.3 × 0.2 + 0.5 × (1 − 0.2)
= 0.13
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Hypothesis test – loaded dice

If  we get two < heads > in a row:

𝑃2 𝐿 = 𝑃1(𝐿| < heads >)

𝑃2 𝐿 =
0.7 × 0.26

0.7 × 0.26 + 0.5 × (1 − 0.26)
= 0.33

• The second evidence also increases our belief  but with a smaller amount

• This is a recursive process where we use the last result as prior

• We can have more than one concurrent hypotheses about a parameter (or a 
variable)

• In fact we can have continuously many hypotheses (from a parameter space or 
a state space)
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Binomial distribution

• The probability to get 𝑘 success from 𝑛 trials is

𝐵 𝑘; 𝑛, 𝑝 =
𝑛
𝑘

𝑝𝑘(1 − 𝑝)𝑛−𝑘

• 𝑝 is the probability of  one trial to succeed

• 𝑘 is the free variable

𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !
is the binomial coefficient

• Pronounce: 𝑛 choose 𝑘

• You can choose 𝑘 out of  𝑛 that many ways
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Binomial distribution

• Coin flip

• 6 trials

• Getting 3 heads and 3 tails is the most 

probable outcome

• Increasing the number of  trials will produce 

Gaussian-like histogram
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Central limit theorem

• https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html

%% Central limit theorem

% Dice roll

n = 1e4;

R = sum(round(6*rand(n)));

histogram(R)

Tossing a coin n times and getting k heads

https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_hu.html
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Normal distribution

• Is the limit of  the
• Binomial distribution: 𝐵(𝑘; 𝑛, 𝑝) → 𝑁(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))
• Poisson distribution: 𝑃(𝑘; 𝜆) → 𝑁(𝑘; 𝜆, 𝜆)
• Chi-squared distribution: 𝜒2(𝑘) → 𝑁(𝑘, 2𝑘)

• Generally, the sum of  independent, identically distributed random variables 
tends toward a normal distribution

• For a given mean and variance this is the maximum entropy distribution
• It is the least informative distribution

• It minimizes the information that we assume to be there

• Physical systems generally move towards equilibrium, that is maximum entropy state

• It has nice mathematical properties
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Normal distribution

• Írja be az egyenletet ide
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Create Gaussian noise 

• Usually we have a random number generator

• We can generate a random number in the interval 0…1

• The standard deviation is 
1

12

• The mean is 0.5

Algorithm

1. Add 12 random numbers (𝜇 = 6, 𝜎 = 1)

2. Subtract 6 (𝜇 = 0, 𝜎 = 1)

3. Multiply by the desired STD

4. Add the desired mean

x = sum(rand(12,1e4));

x = x - 6;

x = x * 3;

x = x + 8;

histogram(x,'normalization

','pdf')

hold on

t = (-

3*sigma:0.1:3*sigma)+mu;

plot(t,normpdf(t,8,3))
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Gaussian vs White noise

• Gaussian noise and white noise are not synonyms

• Gaussian refers the distribution of  the amplitude

• White means that the values are not correlated in time. The intensity is 
the same at all frequencies and the PDF can be any

• A random signal can be white and Gaussian

• This is a desired property

• Tractable analytic models

• Good approximation of  real-world situations

• Additive White Gaussian Noise (AWGN)
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Multivariate normal distribution

• Joint and multivariate distributions are 

synonyms

𝑓 𝐱 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑘

=
1

2𝜋 𝑘 det Σ
exp(−

1

2
(𝐱 − μ)𝑇Σ−1(𝐱 − μ))
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Modelling uncertainties

• Additive noise acting on the motion and sensor model

x𝑘+1|𝑘 = 𝑓𝑘 x𝑘 +𝑤𝑘

z𝑘 = ℎ𝑘 x𝑘 + 𝑣𝑘
random deterministic random

• How do we create probabilities from these random variables?

• Since x and z are usually continuous variables, the probabilities of  
taking specific values are zero.

• However, x and z residing in some region 𝑆 and 𝑇 have nonzero 
probabilities

𝑃(x𝑘+1|𝑘 ∈ 𝑆|x𝑘) 𝑃(z𝑘 ∈ 𝑇|x𝑘)



2019. 02. 27. 26

Modelling uncertainties

• The probability mass is given by integrating the probability density over a region

𝑃 x𝑘+1|𝑘 ∈ 𝑆 x𝑘 = න

𝑆

𝑝 x x𝑘 dx 𝑃 z𝑘 ∈ 𝑇 x𝑘 = න

𝑇

𝑝 z x𝑘 dz

• 𝑝 x x𝑘 is the probability density function associated to the uncertain motion model

• 𝑝 z x𝑘 is the probability density function associated to the uncertain sensor model

• If  the additive noise is zero mean Gaussian 

𝑝 x x𝑘 = 𝒩(x; 𝑓𝑘 x𝑘 , 𝜎𝑤
2)

• Similarly for the sensor model

𝑝 z x𝑘 = 𝒩(z; ℎ𝑘 x𝑘 , 𝜎𝑣
2)
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Hidden Markov model (HMM)

• In the context of  state estimation (robotics) the value to be 
estimated is the state (or state vector in general) of  an object or 
an ensemble of  objects

• The state in unknown to us (hidden) and possibly evolves in time: 
the system has dynamics

• We can observe the system and obtain a limited amount of  
information, for example

• Partial observation of  the state

• Noisy measurements
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Markov assumptions

• The current state depends only on the previous state

𝑝(𝐱𝑘 𝐱𝑘−1, 𝐱𝑘−2, … , 𝐱0 = 𝑝(𝐱𝑘|𝐱𝑘−1)

• The measurement depends only on the current state

𝑝(𝐳𝑘 𝐱𝑘 , 𝐱𝑘−1, … , 𝐱0 = 𝑝(𝐳𝑘|𝐱𝑘)



2019. 02. 27. 29

Recursive Bayesian estimation (in discrete time)

• Estimate the state vector at timestep 𝑘 using measurements up to 𝑘:

𝑝 x𝑘 z1:𝑘 =
𝑝 z𝑘|x𝑘 𝑝(x𝑘|z1:𝑘−1)

𝑝(z𝑘|z1:𝑘−1)

• The denominator is constant and can be expressed as

𝑝 z𝑘|z𝑘−1 = න𝑝 z𝑘|xk 𝑝 x𝑘|z𝑘−1 dx𝑘

• The prior, with the help of  a model of  the system is obtained from the pervious 
posterior through the time-prediction integral (Chapman-Kolmogorov integral):

𝑝 x𝑘|z1:𝑘−1 = න𝑝 x𝑘|xk−1 𝑝 x𝑘−1|z1:k−1 dx𝑘−1

motion model  previous posterior

This was the
Bayes-theorem

𝑃 𝐵𝑘 𝐴 =
𝑃 𝐴 𝐵𝑘 𝑃(𝐵𝑘)

σ𝑖=1
𝑁 𝑃 𝐴|𝐵𝑖 𝑃(𝐵𝑖)
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Accuracy, precision

The quality of  a sensor can be described 
by its precision and accuracy

• Accuracy

• Measures the systematic error (bias)

• Related to the mean of  the measurement

• Precision

• Measure the random error (variability)

• Related to the variance (standard deviation) 
of  the measurement
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Terminology in estimation

• Statistic: a function of  the data

• Estimator: a function of  the data that intends to describe some 
property of  the underlying distribution

• A statistic is not good or bad( or biased or unbiased). It is just a function

• An estimator can be good (unbiased, minimum variance etc.). E.g.: the sample 
mean is an unbiased estimator of  the expected value

• Filtering: estimate 𝑥𝑡 based on measurements 𝑧1:𝑡
• Prediction: estimate 𝑥𝑡+𝜏 based on measurements 𝑧1:𝑡
• Smoothing: estimate 𝑥𝑡−𝜏 based on measurements 𝑧1:𝑡
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Metric – Euclidean

Calculate “real distance” from coordinate differences

• Distance of  two points in 3D: 𝑑(𝑃1, 𝑃2)

𝑑 𝑃1, 𝑃2 = 𝑥1 − 𝑥2
2 + 𝑦1 − 𝑦2

2 + 𝑧1 − 𝑧2
2

Euclidean metric (in Cartesian coordinates)

Are there other ways to get a distance?
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Metric – Polar

Polar coordinate system

• 𝑥 = 𝑟 cos𝜑

• 𝑦 = 𝑟 sin𝜑

We can also have 

cylindrial, toroidal, etc

coordinate systems

𝑑 = 𝑥1 − 𝑥2
2 + 𝑦1 − 𝑦2

2
𝑑 = 𝑟1

2 + 𝑟2
2 − 2𝑟1𝑟2 cos(𝜑1 − 𝜑2)



2019. 02. 27. 34

Metric

• You can make up and use any metric if  it is meaningful in a way

• Metric is not just to calculate a physical distance, it can be any 
“distance” that is useful

• A typical application is to measure the error between some true and 
measured or estimated quantities (e.g. a signal or a state vector)

• Distance between states: error metric

𝐱 = [𝑥, 𝑣𝑥 , 𝑦, 𝑣𝑦] ො𝐱 = [ො𝑥, ො𝑣𝑥, ො𝑦, ො𝑣𝑦]

𝑑 𝐱, ො𝐱 =?
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RMS – Root Mean Square

• The voltage in the wall is 230V, which is the 
effective value of  the alternating sinusoidal 
signal.

• This is the RMS value of  a sinusoidal signal 
that has 325V peak voltage.

• Sometimes we want to describe a signal with 
a single number to be able to easily compare 
them.

• Common choices: maximum (minimum) 
value, average value, RMS value.
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RMS – Root Mean Square

• Computing the RMS of  a signal in the time domain results the 

same as computing it in the frequency domain.

• The RMS value is invariant to the Fourier transform

• A method to verify the result of  a FFT

• It is a property of  a physically existing signal, not just a property 

of  the chosen representation

• It indicates the energy carried by the signal

• In the context of  electricity V_RMS2/RESISTANCE is the power
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RMS – RMSE

• 𝑥𝑅𝑀𝑆 =
1

𝑛
(𝑥1

2 + 𝑥2
2 +⋯𝑥𝑛

2) =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

2

• 𝑥𝑅𝑀𝑆𝐸 =
1

𝑛
𝑒1
2 + 𝑒2

2 +⋯𝑒𝑛
2 =

1

𝑛
σ𝑖=1
𝑛 ( ො𝑥1 − 𝑥1)𝑖

2

• Sometimes RMS and STD are synonyms

• Mean squared deviation (error) is the square of  RMSE
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RMS

• 𝑥 is normally distributed random vector: 𝑥 ~𝒩(𝜇, Σ)

• If  𝑥 describes a signal what is the expectation of  the carried 

power?

E 𝑥 2
2 = 𝜇 2

2 + tr(Σ)
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Mahalanobis distance

• What is the distance of  a point to a 

distribution

• Is this a meaningful question?

• Euclidean distance is always an 

option between points, but what 

point represents the distribution?

• The mean!

• Should we consider the variance-

covariance?
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Mahalanobis distance

% Generate a two dimensional Gaussian

n = 1e3;

Mu = [10;20];

Sigma = [3, 2; 2, 3];

x = mvnrnd(Mu, Sigma, n);

plot(x(:,1),x(:,2),'k.')

hold on; axis equal

% Plot a circle around the centre 

(mean) with radius 2

r = 2;

cx = r * cos(0:0.01:2*pi) + Mu(1);

cy = r * sin(0:0.01:2*pi) + Mu(2);

plot(cx,cy,'b-','LineWidth',1.5)
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Mahalanobis distance

• These points are equally distant to the origin (regarding Euclidean metric)

• But one of  the seems to outlie more than the other

• We should include the variances when calculating the distance!

% 45 deg line

plot((-5:5)+Mu(1),(-5:5)+ Mu(2),

'g','LineWidth',1.5)

% Mean

plot(Mu(1), Mu(2),'k.','MarkerSize',32)

% Points at 45 and 135 deg

plot(r*cos(pi/4)+Mu(1), 

r*sin(pi/4)+Mu(2),'r.','MarkerSize',32)

plot(r*cos(pi*3/4)+Mu(1), 

r*sin(pi*3/4)+Mu(2),'r.','MarkerSize',32)
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Mahalanobis distance

• Euclidean distance: 𝑑 = 𝑥 − 𝜇𝑥
2 + 𝑦 − 𝜇𝑦

2

• Vectorized form: 𝑑 = 𝐱 − 𝜇 ⊺ 𝐱 − 𝜇 with 𝐱 = [𝑥, 𝑦]⊺ and 𝜇 = [𝜇𝑥 , 𝜇𝑦]
⊺

• Weighted Euclidean distance: 𝑑 =
𝑥−𝜇𝑥

𝜎𝑥

2
+

𝑦−𝜇𝑦

𝜎𝑦

2

• Vectorized form: 𝑑 = 𝐱 − 𝜇 ⊺
𝜎𝑥

−1 0

0 𝜎𝑦
−1 𝐱 − 𝜇

• Σ−1 =
𝜎𝑥

−1 0

0 𝜎𝑦
−1

Equation of 
an ellipse 
(scaled by 𝑑)

Inverse of the covariance matrix
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Mahalanobis distance

• The ellipse is the unit circle when the metric is the 
Mahalanobis distance

• General case (when rotated):

𝑑 = 𝐱 − 𝜇 ⊺Σ−1 𝐱 − 𝜇

• Weighted scalar product: 

𝐱 − 𝜇 ⊺Σ−1 𝐱 − 𝜇

• The weight is inversely proportional to the variance: the 
greater the uncertainty the less we take the difference into 
account

• The Euclidean metric uses no weighting (identity matrix)

• You can make up any metric of  this kind by inserting a 
positive definite matrix as weight. (Σ is PSD, it can be 
singular!)
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Classification with Mahalanobis distance

• Say we have 3 categories described by the distributions: 𝒩(𝜇𝑖 , Σ𝑖). The point 𝑥 have the following 
distances from the distributions:

𝐷1
2 = 𝑥 − 𝜇1

⊺ 𝑆1
−1 𝑥 − 𝜇1

𝐷2
2 = 𝑥 − 𝜇2

⊺ 𝑆2
−1 𝑥 − 𝜇2

𝐷3
2 = 𝑥 − 𝜇3

⊺ 𝑆3
−1 (𝑥 − 𝜇3)

• To create probabilities from the distances we should normalize them. The normalization factor is

𝑍 = e−𝐷1
2
+ e−𝐷2

2
+ e−𝐷3

2

• and the probability of  𝑥 belonging to category 𝑖 is

𝑝𝑖 =
𝑒−𝐷𝑖

2

𝑍



Slope

• For a straight line

• 𝑚 = tan 𝜃 =
Δ𝑦

Δ𝑥

• For a curved line

• 𝑚 = tan 𝜃 =
d𝑦

d𝑥
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Linear regression

MATLAB: mldivide

• Solve systems of  linear equation: 𝐴𝑥 = 𝐵
• Can be an overdetermined system

More data points than variables. In this case the solution is given by least-squares method

• Usage: x=mldivide(A,B) or x=A\B

• Use to fit a line to data points

• We have 𝑥 = [𝑥1, 𝑥2, … 𝑥𝑛] and y = 𝑦1, 𝑦2, … 𝑦𝑛
• We want to fit a line: 𝑦 = 𝑚𝑥 + 𝑏

• Now we have 𝑥 and 𝑦 and the unknown is 𝑚



Linear regression

Homogeneous

• 𝑦 = 𝑚𝑥 → 𝑥𝑚 = 𝑦

• Usage: m=x\y

• 𝜑 = tan−1𝑚

Inhomogeneous

• 𝑦 = 𝑚𝑥 + 𝑏 → 𝑥𝑚 + 𝑏 = 𝑦

• 𝑋 = [𝑥, 𝟏]

• Usage: mb=X\y

• m=mb(1); b=mb(2)
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Covariance

• Fit a line

• Determine the slope

• Compute covariance
• cov(x,y)

• Play with the parameters:
• Number of  data points (1e2)

• Range (200)

• Noise magnitude (15)

• Coefficient of  𝑥 (2)

• What are their effects?

% Noisy data points
n = 1e2;
x = linspace(1,200,n)';
y = 2*x +100 + 15*randn(size(x));

figure
hold on; box on
plot(x,y,'o')

% Fit a line: y = m*x+b
X = [x,ones(size(x))];
mb = X\y
m=mb(1); b = mb(2);
fi = atan(m)
plot(x,m*x + b,'r')
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Covariance

• Fit a line

• Determine the slope

• Compute covariance
• cov(x,y)

• Play with the parameters:
• Number of  data points: no effect

• Range: increases covariance

• Noise magnitude: no effect

• Coefficient of  𝑥: increases covariance

• What does covariance measure?

% Noisy data points
n = 1e2;
x = linspace(1,100,n)';
y = 2*x + 100 + 15*randn(size(x));

figure
hold on; box on
plot(x,y,'o')

% Fit a line: y = m*x+b
X = [x,ones(size(x))];
mb = X\y
m=mb(1); b = mb(2);
fi = atan(m)
plot(x,m*x + b,'r')
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Covariance

• The definition is:

cov 𝑋, 𝑌 = E 𝑋 − E 𝑋 𝑌 − E 𝑌

• For concrete data points the discrete formula is:

cov 𝑥, 𝑦 =
1

𝑛
෍

𝑖=1

𝑛

(𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• The range of  𝑥 and 𝑦 is in 𝑥𝑖 − ҧ𝑥 and 𝑦𝑖 − ത𝑦

• The coefficient of  𝑥 effects the range of  𝑦
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Correlation

• To measure the pure connection between 𝑥 and 𝑦 we need to 

normalize the covariance with the range

• This way we create a measure that is independent of  the chosen units. 

Scale independent

• Definition:

r = corr 𝑥, 𝑦 =
cov(𝑥, 𝑦)

var 𝑥 var(𝑦)
=
cov(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
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Correlation

• The greater the correlation the more 𝑥 can explain 𝑦

• 1: maximal correlation

• 0: no correlation

• -1: maximal anticorrelation

𝑟2 measures what proportion

in the variance of  𝑦 can be

explained by 𝑥:

• var 𝑒 = 1 − 𝑟2 var(𝑦)
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Slope vs correlation

• The slope and the correlation are the same, if  𝜎𝑥 = 𝜎𝑦

tan𝜑 =𝑚 = corr(𝑥, 𝑦)
var(𝑦)

var(𝑥)
= 𝑟

𝜎𝑦

𝜎𝑥

• The closer the correlation to one the more perfect the linear relationship

• The slope does not contain this information

• The slope tells how much 𝑦 changes with 𝑥
• The correlation does not contain this information

• If  we swap 𝑥 and 𝑦 the correlation remains the same but not the slope!

But the signs are the same


