AUTOMOTIVE ENVIRONMENT SENSORS

Lecture 11 LIDARs Dr. Szilárd Aradi

BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG

LIDAR introduction

- Light Detection and Ranging or Laser Imaging, Detection and Ranging: is a surveying method that measures distance to a target by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor (Time of Flight).
- Laser: light amplification by stimulated emission of radiation.
 - Spatial coherence allows a laser to be focused to a tight spot
 - Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum
 - In this usage, the term "light" includes electromagnetic radiation of any frequency, not only visible light

By The original image was uploaded on de.wikipedia as de:Bild:THEL shoot2.jpg, from US Army Space & Missile Defense Command, Public Domain, https://commons.wikimedia.org/w/index.php?curid=738559

By US Missile Defense Agency - Selected ALTB Photos. Airborne Laser Test Bed. MDA. Retrieved on 29 June 2013., Public Domain, https://commons.wikimedia.org/w/index.php?curid=26465745

LIDAR (and laser) history

- In 1917, Albert Einstein established the theoretical foundations for the laser and the maser
- In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation
- On May 16, 1960, Theodore H. Maiman operated the first functioning laser.
- In 1962, Robert N. Hall demonstrated the first laser diode device (Ge).
- The general public became aware of the accuracy and usefulness of lidar systems in 1971 during the Apollo 15 mission.
 - Lunar Laser Ranging experiment measures the distance between surfaces of Earth and the Moon using laser ranging. Astronauts planted retroreflectors which were aimed from the Earth.
- Lidars are extensively used in meteorology, geography, robotics etc.
- The vehicle industry started utilizing LIDARs for the autonomous researches. First bigger projects were DARPA Grand Challenge and the Google Self-Driving Car.

LIDAR basics

- Based on the time of flight, speed of light
 - The sensor sends short pulses like pulse radars
- Reflection of light is either specular (mirror-like) or diffuse (retaining the energy but losing the image) depending on the nature of the interface.
- Uses diffuse reflection (can't detect mirrors)

LIDAR equation

- I Intensity
- η Receiver efficiency
- β Reflection coefficient
- σ Absorption coefficient
- A Area of the receiver

LIDAR measurement

- One sensor can measure one reflection time and distance at once.
- Rotating the sensor can provide a point cloud.
- It is possible to rotate a mirror in front of the device

2D LIDAR and "multi-echo"

- ÷ .
- ÷
- ÷
- ÷
- 1
- 1
- +

LIDAR structure

- Optical transmitter-receiver
 - Drive circuit (3-20 ns pulse)
 - Semiconductor laser or photodiode
 - Optics (polycarbonate glass, shadowing)
- Signal processing
 - STC (Sensitivity Time Control) and Main Amplifier: time proportional gain
 - Range detection circuit
- 2D LIDAR: Multiple beams or rotating mechanism
- 3D LIDAR: multiple beams and rotating mechanism
 - Multiple beams provide approx. 10 deg. cone

Lidar specifications

- 2D
 - Angle
 - Range: function of remission
 - Scanning frequency: whole scans per seconds
 - Angular resolution
 - Working range: function of remission
 - Accuracy
- 3D
 - Vertical and horizontal FoV
 - Range
 - Number of channels: number of laser beams that cover the vertical field of view
 - Angular resolution: vertical FoV divided by no. of channels gives the vertical resolution
 - Rotation rate
 - Accuracy

Vehicular LIDARs I.

- Velodyne VLP-16 (Puck Lite) vs. HDL-32
 - \$4000 vs. \$29 999
 - Dual Returns
 - 830g (590g) vs. 1000g
 - 16 vs. 32 channel
 - 100m distance
 - 3cm vs. 2cm accuracy
 - 300 000 vs 600 000 points/sec
 - 360° horizontal angle
 - ± 15° vs ± 20° vertical angle

-72mm (~4")-

Vehicular LIDARs II.

- Ibeo LUX family
 - 3 type 3D and 1 type 2D
 - 120-200m range
 - +50° -60° horizontal viewing angle
 - 3.2 ° and 6.4 ° vertical viewing angle
 - 4 or 8 channels
 - 25 or 50 Hz sampling
 - 10 cm accuracy
 - Max. 65 object tracking and classification
- Ibeo Reference sensor system
 - 6 Ibeo LUX around the vehicle
 - 1 SICK LMS 500 for road scanning
 - Central Unit
 - Camera
 - GPS

Vehicular LIDARs III.

- Blackmore
 - Prototype FMCW lidar
 - 120x30 ° angle of view
 - 450m range
 - Calculates velocity information from Doppler shift
 - It has not released yet.
- Hokuyo, SICK
 - Professional solutions
 - For logistics and manufacturing
 - Some products are eligible for automotive use

Special lidar example

SICK LMS511

- 2D professional outdoor lidar
- Angle: 190°
- Scanning frequency: 25 Hz / 35 Hz / 50 Hz / 75 Hz / 100 Hz
- Angular resolution: 0.167° / 0.25° / 0.333° / 0.5° / 0.667° / 1°
- Range: 80 m
- Interfaces: Ethernet, CAN, Serial, USB
- Multi-echo (max. 5 evaluated echoes)
- Filtering capabilities
- Approx. 6000 EUR

SICK TIM551

- 2D outdoor lidar
- Angle: 270°
- Scanning frequency: 15 Hz
- Angular resolution: 1°
- Range: 8 m
- Interfaces: Ethernet, USB
- Approx. 2000 EUR

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

Dr. Szilárd Aradi

email: aradi.szilard@mail.bme.hu

Thank you for your attention!

BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG